Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Геометрическая интерпретация двойственных задач




Связь между решениями прямой и двойственной задач

Рассмотрим пару двойственных задач, образованную основной задачей линейного программирования и двойственной к ней. Исходная задача: найти максимум функции

(36)

при условиях

(37)

(38)

Двойственная задача: найти минимум функции

(39)

при условиях

(40)

Каждая из задач двойственной пары (36) – (38) и (39), (40) фактически является самостоятельной задачей линейного программирования и может быть решена независимо одна от другой. Однако при определении симплексным методом оптимального плана одной из задач тем самым находится решение и другой задачи.

Существующие зависимости между решениями прямой и двойственной задач характеризуются сформулированными ниже леммами и теоремами двойственности.

Лемма 1.1 Если Х – некоторый план исходной задачи (36) – (38), a Y – произвольный план двойственной задачи (39), (40), то значение целевой функции исходной задачи при плане Х всегда не превосходит значения целевой функции двойственной задачи при плане Y, т. е.

Лемма 1.2 Если для некоторых планов X* и Y* задач (36) – (38) и (39), (40), то X* – оптимальный план исходной задачи, а Y* – оптимальный план двойственной задачи.

Теорема 1.8 (первая теорема двойственности). Если одна из задач двойственной пары (36) – (38) или (39), (40) имеет оптимальный план, то и другая имеет оптимальный план и значения целевых функций задач при их оптимальных планах равны между собой, т. е.

Если же целевая функция одной задачи из двойственной пары неограничена (для исходной (36) – (38) – сверху, для двойственной (39), (40) – снизу), то другая задача вообще не имеет планов.

Теорема 1.9 (вторая теорема двойственности). План задачи (43) – (45) и план задачи (46), (47) являются оптимальными планами этих задач тогда и только тогда, когда для любого выполняется равенство

 

Если число переменных в прямой и двойственной задачах, образующих данную пару, равно двум, то, используя геометрическую интерпретацию задачи линейного программирования, можно легко найти решение данной пары задач. При этом имеет место один из следующих трех взаимно исключающих друг друга случаев: 1) обе задачи имеют планы; 2) планы имеет только одна задача; 3) для каждой задачи двойственной пары множество планов пусто.

Пример. Для задачи, состоящей в определении максимального значения функции при условиях

 

составить двойственную задачу и найти решение обеих задач.

Решение. Двойственной задачей по отношению к исходной является задача, состоящая в определении минимального значения функции при условиях

 

Как в исходной, так и в двойственной задаче число неизвестных равно двум. Следовательно, их решение можно найти, используя геометрическую интерпретацию задачи линейного программирования (рис. 7 и 8).

Как видно из рис. 8, максимальное значение целевая функция исходной задачи принимает в точке В. Следовательно, Х*= (2, 6) является оптимальным планом, при котором. Минимальное значение целевая функция двойственной задачи принимает в точке Е (рис. 8). Значит, Y *=(1; 4) является оптимальным планом двойственной задачи, при котором Таким образом, значения целевых функций исходной и двойственной задач при их оптимальных планах равны между собой.

 

Из рис. 7 видно, что при всяком плане исходной задачи значение целевой функции не больше 46. Одновременно, как видно из рис. 8, значение целевой функции двойственной задачи при любом ее плане не меньше 46. Таким образом, при любом плане исходной задачи значение целевой функции не превосходит значения целевой функции двойственной задачи при ее произвольном плане.




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 812; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.039 сек.