Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общая постановка задачи. Опорным решением задачи называется допустимое неотрицательное решение

Лекция 3

3. СИМПЛЕКСНЫЙ МЕТОД

Опорным решением задачи называется допустимое неотрицательное решение. Идея симплексного метода заключается в том, что, начиная с некоторого исходного опорного решения, осуществляется последовательно направленное перемещение по опорным решениям задачи к оптимальному решению.

3.2. Алгоритм симплексного метода

1. Математическая модель должна быть канонической. Если она неканоническая, то её надо привести к каноническому виду.

2. Находим исходное опорное решение и проверяем его на оптимальность. Для этого заполняем симплексную таблицу. Все строки таблицы 1-го шага, за исключением строки ∆j заполняем по данным системы ограничений и целевой функции:

Таблица 3.1

сi БП с1 с2 cm cm+1 cn
x1 x2 xm xm+1 xn bi
c1 x1 1 0 0 h1,m+1 h1n f1
c2 x2 0 1 0 h2.m+1 h2n f2
cm xm 0 0 1 hm,m+1 hmn fm
  j 0 0 0 m+1 n

Индексная строка для переменных находится по формуле

и по формуле для свободного члена.

Возможны следующие случаи при решении задачи на максимум:

- если все оценки , то найденное решение оптимальное;

- если хотя бы одна оценка , но при соответствующей переменной нет ни одного положительного коэффициента, решение задачи прекращаем, так как , т. е. целевая функция неограниченна в области допустимых решений;

- если хотя бы одна оценка отрицательна, а при соответствующей переменной есть хотя бы один положительный коэффициент, то нужно перейти к другому опорному решению;

- если отрицательных оценок в индексной строке несколько, то в столбец базисной переменной (БП) вводят ту переменную, которой соответствует наибольшая по абсолютной величине отрицательная оценка.

Если хотя бы одна оценка , то к -й столбец принимаем за ключевой. За ключевую строку принимаем ту, которой соответствует минимальное отношение свободных членов (fi) к положительным коэффициентам к -го столбца. Элемент, находящийся на пересечении ключевой строки и ключевого столбца, называется ключевым элементом.

3. Заполняем симплексную таблицу 2-го шага:

- переписываем ключевую строку, разделив её на ключевой элемент;

- заполняем базисные столбцы;

- остальные коэффициенты таблицы находим по правилу «прямоугольника». Оценки можно считать по приведённым выше формулам или по правилу «прямоугольника». Получаем новое опорное решение, которое проверяем на оптимальность, и т. д.

Правило «прямоугольника» заключается в следующем. Пусть ключевым элементом 1-го шага является элемент 1-й строки (m+1)-го столбца h1,m+1. Тогда элемент i -й строки (m+2)-го столбца 2-го шага – обозначим его согласно правилу «прямоугольника» выражается формулой

,

где hi,m+2, hi,m+1, h1,m+1 – элементы 1-го шага.

Примечание 1. Если целевая функция требует нахождения минимального значения, то критерием оптимальности задачи является следующее условие:

Примечание 2. Если в правой части какого-нибудь неравенства из системы ограничений стоит отрицательное число, то обе части этого неравенства нужно разделить на (-1), а потом приводить это неравенство к каноническому виду.

Примечание 3. Пусть модель каноническая, но нет переменных, которые можно использовать в качестве базисных (т. е. таких, которые в одном уравнении стоят с коэффициентом 1, а в других вообще отсутствуют). Тогда нужно по своему усмотрению выбирать базисные переменные, определять ключевой столбец и строку, пересчитывать элементы таблицы по правилу «прямоугольника», не заполняя оценочной строки. Это нужно проделывать до тех пор, пока не будут найдены все базисные переменные. Затем заполнить оценочную строку и определить, является ли найденное решение оптимальным. Если нет, то пересчитать таблицу.


<== предыдущая лекция | следующая лекция ==>
Выпуска изделий | Производственного потенциала предприятия
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 318; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.