Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теплота сгорания различных топлив

Топливо   Теплота сгорания, кДж/кг  
Бензин Дизельное топливо Спирт этиловый      
       

 

От теплоты сгорания зависит топливная экономичность: чем выше теплота, тем меньше топлива необходимо для м3 смеси.

Нормальное и детонационное сгорание. При нормальном сгорании процесс протекает плавно с почти полным окислением топлива и скоростью распространения пламени 10...40 м/с. Когда скорость распространения пламени возрастает и достигает 1500...2000 м/с, возникает детонационное сгорание, характеризующееся неравномерным протеканием процесса, скачкообразным изменением скорости движения пламени и возникновением ударной волны.

Детонация вызывается самовоспламенением наиболее удаленной от запальной свечи части бензино-воздушной смеси, горение которой приобретает взрывной характер. Условия для детонации наиболее благоприятны в той части камеры сгорания, где выше температура и больше время пребывания смеси. Внешне детонация проявляется в появлении звонких металлических стуков - результата многократных отражений от стенок камеры сгорания образующихся ударных волн.

Возникновению детонации способствует повышение степени сжатия, увеличение угла опережения зажигания, повышенная температура окружающего воздуха и его низкая влажность, особенности конструкции камеры сгорания. Вероятность детонационного сгорания топлива возрастает при наличии нагара в камере сгорания и по мере ухудшения технического состояния двигателя. В результате детонации снижаются экономические показатели двигателя, уменьшается его мощность, ухудшаются токсические показатели отработавших газов [1].

Бездетонационная работа двигателя достигается применением бензина с соответствующей детонационной скоростью. Углеводороды, входящие в состав бензинов, различаются по детонационной стойкости. Наименее стойки к детонации нормальные парафиновые углеводороды, наиболее - ароматические. Остальные углеводороды, входящие в состав бензинов, по детонационной стойкости занимают промежуточное положение. Варьируя углеводородным составом, получают бензины с различной детонационной стойкостью, которая характеризуется октановым числом (0Ч).

0Ч - это условный показатель детонационной стойкости бензина, численно равный процентному содержанию (по объему) изооктана в смеси с нормальным гептаном, равноценной по детонационной стойкости испытуемому топливу.

Для любого бензина октановое число определяют путем подбора смеси из двух эталонных углеводородов (нормального гептана с 0Ч=0 и изооктана с 0Ч=100), которая по детонационным свойствам эквивалентна испытуемому бензину. Процентное содержание в этой смеси изооктана принимают за 0Ч бензина.

Определение 0Ч производится на специальных моторных установках. Существуют два метода определения 0Ч - исследовательский (0ЧИ - октановое число по исследовательскому методу) и моторный (0ЧМ - октановое число по моторному методу).

Наиболее важным конструктивным фактором, определяющим требования двигателя к октановому числу, является степень сжатия. Повышение степени сжатия двигателей автомобилей позволяет улучшить их технико-экономические и эксплуатационные показатели. При этом возрастает мощность и снижается удельный расход топлива. Однако с увеличением степени сжатия необходимо повышать октановое число бензина. Поэтому важнейшим условием бездетонационной работы двигателей является соответствие требований к детонационной стойкости двигателей октановому числу применяемых бензинов [3].

В топлива, детонационная стойкость которых не соответствует требованиям, добавляют высокооктановые компоненты (бензол, этиловый спирт) или антидетонаторы.

Антидетонаторы.

Алкилсвинцовые антидетонаторы. Наиболее эффективной антидетонационной присадкой до конца XX столетия являлся тетраэтилсвинец (ТЭС). Способность ТЭС подавлять детонацию была открыта в 1921 г., а с 1923 г. начался массовый промышленный выпуск этого антидетонатора. В настоящее время (с июля 2004) в интересах экологической безопасности повсеместно запрещен.

Алкилсвинцовые антидетонаторы - тетраэтилсвинец и тетра-метилсвинец (ТМС) - применяются в виде жидкостей, включающих в свой состав кроме металлоорганических соединений, выноситель, наполнитель и краситель. Наибольшее распространение получили жидкости Р-9, П-2 и 1-ТС.

Этиловая жидкость Р-9 состоит из 54 % ТЭС, 33 % бромистого этила и 6 8+0,5 % монохлорнафталина в качестве выносителя свинца; 0,1 % красителя и наполнителя (керосин или бензин) до 100 %. Жидкость П-2 в качестве выносителя содержит дибромпропан, а жидкость 1-ТС - дибромэтан.

Тетраэтилсвинец при повышенных температурах от 200°С начинает разлагаться с образованием металлического свинца и свободного радикала. При температуре 500-600°С происходит полное разложение ТЭС и окисление металлического свинца.

Окись свинца прерывает избыточное развитие перекисных цепочек, образующихся в рабочей смеси, тем самым предотвращая процесс взрывного горения. При сгорании бензина, содержащего ТЭС, образуется окись свинца с низкой летучестью (tпл =888°С), поэтому часть ее отлагается на стенках камеры сгорания, свечах, клапанах, что может вывести двигатель из строя.

Галоидоалкильные выносители (табл. 9) превращают металлический свинец и его окись в «летучие» галоидопроизводные, которые удаляются из двигателя вместе с отработавшими газами.

Таблица 9

<== предыдущая лекция | следующая лекция ==>
Потери бензина в зависимости от давления насыщенных паров | Физические свойства выносителей для свинцовых антидетонаторов
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 485; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.