Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Тема 3. Симплекс - метод




Обобщение графического метода решения задач линейного программирования.

Вообще, с помощью графического метода может быть решена задача линейного программирования, система ограничений которой содержит n неизвестных и m линейно независимых уравнений, если N и M связаны соотношением N – M = 2.

Действительно, пусть поставлена задача линейного программирования.

 

Найти минимальное значение линейной функции Z = С1х12х2+... +СNxN при ограничениях

a11x1 + a22x2 +... + a1NХN = b1

a21x1 + a22x2 +... + a2NХN = b2 (2.3)

........................

aМ1x1 + aМ2x2 +... + aМNХN = bМ

xj 0 (j = 1, 2,..., N)

где все уравнения линейно независимы и выполняется cсоотношение N - M = 2.

Используя метод Жордана - Гаусса, производим M исключений, в результате которых базисными неизвестными оказались, например, M первых неизвестных х1, х2,..., хM, а свободными - два последних: хМ+1, и хN, т. е. система ограничений приняла вид

x1 + a1,М+1xМ+1 + a1NХN = b1

x2 + a2,М+1xМ+1 + a2NХN = b2 (2.4)

........................

xМ + aМ, М+1x2 + aМNХN = bМ

xj 0 (j = 1, 2,..., N)

С помощью уравнений преобразованной системы выражаем линейную функцию только через свободные неизвестные и, учитывая, что все базисные неизвестные - неотрицательные: хj 0 (j = 1, 2,..., M), отбрасываем их, переходя к системе ограничений, выраженных в виде неравенств. Таким образом, окончательно получаем следующую задачу.

Найти минимальное значение линейной функции Z = СМ+1хМ+1NxN при ограничениях

a1,М+1xМ+1 + a1NХN b1

a2,М+1xМ+1 + a2NХN b2

...................

aМ,М+1xМ+1 + aМNХN bМ

xМ+1 0, хN 0

Преобразованная задача содержит два неизвестных; решая ее графическим методом, находим оптимальные значения xМ+1 и хN, а затем, подставляя их в (2.4), находим оптимальные значения х1, х2,..., хM.

Пример.

Графическим методом найти оптимальный план задачи линейного программирования, при котором линейная функция Z = 2х1 - х2 + х3 - 3х4 + 4х5 достигает максимального значения при ограничениях

х1 - х2 + 3х3 - 18х4 + 2х5 = -4

1 - х2 + 4х3 - 21х4 + 4х5 = 2

1 - 2х2 + 8х3 - 43х4 + 11х5 = 38

xj 0 (j = 1, 2,..., 5)

Решение.

Используя метод Жордана-Гаусса, произведем три полных исключения неизвестных х1, х2, х3. В результате приходим к системе

х1 + х4 - 3х5 = 6

х2 + 7х4 + 10х5 = 70

х3 - 4х4 + 5х5 = 20

Откуда x1 = 6 – х4 + 3x5, х2 = 70 – 7х4-10х5, х3 = 20 + 4х4 -5х5.

Подставляя эти значения в функцию и отбрасывая в системе базисные переменные, получаем задачу, выраженную только через свободные переменные х4 и х5: найти максимальное значение линейной функции Z = 6х4 + 15х5 – 38 при ограничениях

х4 - х5 6

4 + 10х5 70

- 4х4 + 5х5 20

х4 0, х5 0.

 

Построим многогранник решений и линейную функцию в системе координат х4Ох5 заключаем, что линейная функция принимает максимальное значение в угловой точке В, которая лежит на пересечении прямых 2 и 3. В результате решения системы

4 + 10х5 = 70

-4х4 + 5х5 = 20

находим: х4 = 2, х5 = 28/5. Максимальное значение функции Zmax = -38 + 12 + 84 = 58. Для отыскания оптимального плана исходной задачи подставляем найденные значения х4 и х5. Окончательно получаем: х1 = 104/5, х2 = 0, х3 = 0, х4 = 2, х5 = 28/5.




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 368; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.