Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пределы ф-ции на бесконечности

Док-во

Связь сходящихся посл-тей и б/м.

Дает сл. теорему

Теорема Для того чтобы посл-ть xn имела пределом число а необходимо, чтобы эл-ты этой посл-ти можно было представить в виде xn=a+an, где посл-ть {an}®0, т.е. является б/м.

а) Допустим, что xn®a и укажем посл-ть an удовл. равенству xn=a+an. Для этого просто положим an=xn-a, тогда при n®¥½xn-a½ равно растоянию от xn до а ® 0 => an б/м и из равенства преобразования определяю an получаем xn=a+an.

Свойство б/м

Если {xn},{yn}- любые посл-ти, то их сумма {xn+yn}, это есть пос-ть с общим членом xn+yn. Аналогично с разностью, частным и умножением.

Т-ма о св-вах б/м

а) {xn}и{yn}-б/м пос-ти, б/м

1) их сумма, разность и произведение являются б/м

2) Произведение любой огранич. посл-ти на б/м являются б/м

!О частном не говорят, т.е. частное б/м может не быть б/м.

Посл-ть {xn} явл. б/б, если для любого числа с>0 сущ-ет номер N для всех номеров n>N ½xn½>c.

!Понятие б/б не совпадает с неограниченной: посл-ть может быть неогранич., но не является б/б.

Пример 1,1/2,3,1/4,5,1/6,7… явл. неогранич., т.е. принимает сколь угодно большие по модулю значения, однако в ней имеются эл-ты со сколь угодно большими номерами принимающие дробные знач. и сколь угодно малые по модулю.

 

Св-ва сходящихся посл-тей

Теорема “Об единственности пределов”

Если посл-ть xn сходится, то она имеет единственный предел.

Док-во (от противного)

{xn} имеет два разл. Предела a и b, а¹b. Тогда согласно определению пределов любая из окрестностей т. а содержит все эл-ты посл-ти xn за исключением конечного числа и аналогичным св-вом обладает любая окрестность в точке b. Возьмем два радиуса e= (b-a)/2, т.к. эти окрестности не пересекаются, то одновременно они не могут содержать все эл-ты начиная с некоторого номера. Получим противоречие теор. док-на.

Теорема “Сходящаяся посл-ть ограничена”

Пусть посл-ть {xn}®а e >о N:"n>N½xn-a½<e эквивалентна а-e<xn<a+e "n>N => что каждый из членов посл-ти удовлетворяет неравенству½xn½£ c = max {½a-e½,½a+e½,½xn½,…,½xn-1½}

Теорема “Об арифметических дейсьвиях”

Пусть посл-ть {xn}®a,{yn}®b тогда арифметические операции с этими посл-тями приводят к посл-тям также имеющие пределы, причем:

а) предел lim(n®¥)(xn±yn)=a±b

б) предел lim(n®¥)(xn*yn)=a*b

в) предел lim(n®¥)(xn/yn)=a/b, b¹0

Док-во:

а)xn±yn=(а+an)±(b+bn)=(a±b)+(an±bn) Правая часть полученная в разности представляет сумму числа a+b б/м посл-тью, поэтому стоящая в левой части xn+yn имеет предел равный a±b. Аналогично др. св-ва.

б) xn*yn=(а+an)*(b+bn)=ab+anb+abn+anbn

an*b – это произведение const на б/м

а*bn®0, anbn®0, как произведение б/м.

=> поэтому в правой части стоит сумма числа а*b+ б/м посл-ть. По т-ме О связи сходящихся посл-тей в б/м посл-ти в правой части xn*yn сводится к a*b

Практический вывод состоит в том, что нахожд. пределов посл-тей заданных сл. выражениями можно сводить к более простым задачам вычисления lim от составляющих этого выр-ния

Посл-ть {xn} наз-ся возр., если x1<…<xn<xn+1<…;

неубывающей, если x1£x2£…£xn£xn+1£…; убывающей, если x1>x2>…>xn>xn+1>…; невозр., если x1³x2³…³xn³xn+1³…

Все такие посл-ти наз-ся монотонными. Возр. и убыв. наз-ся строго монотонными

Монотонные посл-ти ограничены с одной стороны, по крайней мере. Неубывающие ограничены снизу, например 1 членом, а не возрастыющие ограничены сверху.

Теорема “О сходимости монотон. посл-ти”

Всякая монотонная посл-ть явл-ся сходящейся, т.е. имеет пределы. Док-во Пусть посл-ть {xn} монотонно возр. и ограничена сверху. X – все мн-во чисел которое принимает эл-т этой посл-ти согласно усл. Теоремы это мн-во огранич., поэтому по соотв. Теореме оно имеет конечную точную верх. грань supX xn®supX (обозначим supX через х*). Т.к. х* точная верх. грань, то xn£x* " n. " e >0 вып-ся нер-во $ xm(пусть m- это n с крышкой):xm>x*-e при " n>m => из указанных 2-х неравенств получаем второе неравенство x*-e£xn£x*+e при n>m эквивалентно ½xn-x*½<e при n>m. Это означает, что x* явл. пределом посл-ти.

 

Экспонента или число е

Функции одной переменной

Обратные функции

 

6. Экспонента или число е

Р-рим числ. посл-ть с общим членом xn=(1+1/n)^n (в степени n)(1). Оказывается, что посл-ть (1) монотонно возр-ет, ограничена сверху и сл-но явл-ся сходящейся, предел этой пос-ти наз-ся экспонентой и обозначается символом е»2,7128…

Док-ть сходимость посл-ти (1)

Для док-ва введем вспом-ю ф-цию y=(1+x)^1/x, x>0 Ясно что при знач. x=1,1/2,1/3,…,1/n,… значение ф-ции y совпадает с соответствующими эл-ми (1).

Док-м что ф-ция у монотонно убывает и огран. сверху => монотонное возр. посл-ти (1) и ограниченность ее сверх. Поскольку lg x явл-ся монотонно возр., но монотонное убыв. ф-ции у и ее огранич. сверху эквивалентны том, что ф-ция lgy, которая равняется 1/хlg(1+x) (2) имеет те же самые св-ва, т.е. 0<x1<x2, то тогда 1/x1*lg(1+x1)>1/x2* *lg(1+x2) (3). Огранич. сверху $ M:1/xlg(1+x)£lgM "x>0 (4). Возьмем любую лин. ф-цию вида y=kx которая превосходит lg(1+x) при всех x>0.

tga1=(lg(1+x1))/x1 a1>a2=>tga1>tga2

tga2=(lg(1+x2))/x2

Поскольку a1>a2, то tga1>tga2, а это равносильно равенству (3). Поскольку y>lg(1+x) "x>0 => kx>

>lg(1+x) "x>0

Принимая во внимания ф-ции у с пос-ть xn приходим к нужному утверждению. Число е явл-ся неизбежным спутником динамических процессов: почти всегда показатели изменяющиеся во времени характеризующие такие процессы зависят от времени через экспонициальную ф-цию y=e^x и ее модификации.

Пр-р: если ставка сл-ных % равна r и инвестор положил в банк первоначальный вклад равный Р причем % начисляются m раз в год (r- годовая ставка) тогда через n- лет наращенная сумма нач-ся по ф-ле сл. % при m кратном их начислению.

Sn=P(1+r/m)^mn (5) Предположим теперь % нач-ся непрерывным образом, т.е. число периодов нач-ния неограничено ув-ся. Мат-ки это соотв-ет тому, что выражение (5) надо р-равать, как общий член посл-ти Xm, а непрерывному нач-нию соот-ет наращенная ф-ция lim(n®¥)P(1+r/m)^mn=Pe^rn

Lg(e)x имеет спец. Обозначение lnx.

Принцип вложенных отрезков

Пусть на числовой прямой задана посл-ть отрезков [a1,b1],[a2,b2],…,[an,bn],…

Причем эти отрезки удовл-ют сл. усл.:

1) каждый посл-щий вложен в предыдущий, т.е. [an+1,bn+1]Ì[an,bn], "n=1,2,…;

2) Длины отрезков ®0 с ростом n, т.е. lim(n®¥)(bn-an)=0. Посл-ть с указанными св-вами наз-ют вложенными.

Теорема Любая посл-ть вложенных отрезков содержит единную т-ку с принадлежащую всем отрезкам посл-ти одновременно, с общая точка всех отрезков к которой они стягиваются.

Док-во {an}-посл-ть левых концов отрезков явл. монотонно не убывающей и ограниченной сверху числом b1.

{bn}-посл-ть правых концов монотонно не возрастающей, поэтому эти посл-ти явл. сходящимися, т.е. сущ-ют числа с1=lim(n®¥)an и с2=lim(n®¥)bn => c1=c2 => c - их общее значение. Действительно имеет предел lim(n®¥)(bn-an)= lim(n®¥)(bn)- lim(n®¥)(an) в силу условия 2) o= lim(n®¥)(bn-an)=с2-с1=> с1=с2=с

Ясно что т. с общая для всех отрезков, поскольку "n an£c£bn. Теперь докажем что она одна.

Допустим что $ другая с‘ к которой стягиваются все отрезки. Если взять любые не пересекающиеся отрезки с и с‘, то с одной стороны весь “хвост” посл-тей {an},{bn} должен нах-ся в окрестностях т-ки с‘‘(т.к. an и bn сходятся к с и с‘ одновременно). Противоречие док-ет т-му.

Принцип вложенных отрезков

Т-ма. Любая пос-ть вложенных отрезков содержит единств. т-ку сÎвсем отрезкам посл-ти одновременно, к которой они стягиваются.

Док - во. {an} пос-ть левых концов явл. монотонно неубыв. И огран. свеху числом b1; посл-ть правых концов {bn} монотонно не возр. и ограничена снизу а1, поэтому эти посл-ти сходящ., т.е. $ числа c1=lim(n®¥)an и c2=lim(n®¥)bn.

Докажем что с1=с2 и сл-но их общая знач. может обозначить через с. Действ. имеется предел lim(n®¥)(bn-an)= lim(n®¥)bn® lim(n®¥)an=c2-c1=c ясно что с общая для всех отрезков поскольку для " n an£c£bn. Осталось доказать единство данной т-ки (от противного). Допустим есть c‘¹c к которой стягиваются все отрезки. Если взять любые пределы окр. точек с и с‘, то с одной стороны весь “хвост” {an}, {bn}, должен нах-ся в окрестности т-ки с, а др. в с‘, т.к. an и bn® c и c‘ одновр. Противореч. док-ет т-му.

 

7.Ф-ции одной переменной

Если задано правило по которому каждому значению перем. Величины х из мн-ва Х ставится соответствие 1 значению перем. У то в этом случае говорят, что задана ф-ция 1-й переменной.

Y=f(x); x –аргумент независ. перемен., y- зав. пер.

X=Df=D(f) y={y;y=f(x),xÎX} x1ÎX1, y1=f(x1)

1) аналит. способ; 2)Табличный способ;

3) Графический способ;

4)Min и max ф-ции: ф-ция f(x) ограничена, если огран. ее мн-во знач У, т.е. $ m,M: m£f(x)£M "xÎX

m£f(x) "xÎX => огр. сн.; f(x)£M, "xÎX=> огр. св.

 

Обратные ф-ции

Если задано правило по которому каждому значению yÎY ставится в соответствие ® ед. знач. х, причем y=f(x), то в этом случае говорят, что на мн-ве Y определена ф-ция обратная ф-ции f(x) и обозначают такую ф-цию x=f^-1(y).

 

Предел функции в точке

Свойства предела функции в точке

Односторонние пределы функции в точке:

Предел функции в точке

Предел и непрерывность функции

Предел. Односторонний предел.

Предел ф-ции в точке

y=f(x) X

опр. " {xn} ÌX, xn®x0

f(xn)®A,=> f(x) в т. x0 (при, xn®x0) предел = А

А=lim(x®x0)f(x) или f(x)®A при x®x0

Т-ка x0 может Î и Ï мн-ву Х.

 

Свойства предела ф-ции в точке

1) Если предел в т-ке сущ-ет, то он единственный

2) Если в тке х0 предел ф-ции f(x) lim(x®x0)f(x)=A

lim(x®x0)g(x)£B=> то тогда в этой т-ке $ предел суммы, разности, произведения и частного. Отделение этих 2-х ф-ций.

а) lim(x®x0)(f(x)±g(x))=A±B

б) lim(x®x0)(f(x)*g(x))=A*B

в) lim(x®x0)(f(x):g(x))=A/B

г) lim(x®x0)C=C

д) lim(x®x0)C*f(x)=C*A

Док-во xn®x0, $ lim(x®x0)f(x)=A по опр. f(xn)®A {f(xn)}

 

Односторонние пределы ф-ции в т-ке:

Опр. А - предел ф-ции f(x) справа от точки х0, если f(x)®A при х®х0, и x>x0

Формально это означает, что для любой посл-ти {xn}®x0, вып-ся условие xn>x0, f(x)®A. Обозначим f(x0+0) и f(x0+) lim(x®x0+0)f(x)®

И также с минусами.

 

Признак $ предела

Т-ма Для того чтобы f(x) имела предел в т-ке х0 необх., тогда в этой т-ке ф-ция f имеет совпадающ. Между собой одностор. предел (f(x0+)=f(x0-) (1), которые равны пределу ф-ции.

Док-во. f(x) имеет в т-ке х0 предел А, тогда f(x)®A независимо от того приближается ли х к х0 по значению больше х0 или меньше это означает равенство (1)

 

Предел ф-ции в т-ке

Число А наз-ся пределом ф-ции в т-ке х0 если "e>0 найдется такое число В>0, для всех х отличных от х0 и (х-х0)<0 должно ½f(x)-A½<e

" e >0 из ½х-х0½<d должно быть

Пусть ½f(x)-x0½<e, если d=e, то ½х-х0½<d => ½f(x)-x0½<e

 

Свойства пределов. Непрерывность ф-ции.

Ф-ция f(x) непрерывна в т-ке х0 если предельное значение в этой т-ке равно самому знач. в этой точке.

 

Предел и непрерывность функции

Пусть ф-ция f(x) определена на некотором пр-ке Х* и пусть точка х0ÎХ или х0ÏХ.

Опр. Число А наз-ся пределом ф-ции f(x) в точке х=х0, если для " e>0 $ d>0 такое, что для всех хÎХ, х¹х0, удовлетвор. неравенству ½х-х0½<e, выполняется неравенство ½f(x)-A½<e.

Пример Используя определение, док-ть что ф-ция f(x)=C(C-некоторое число) в точке х=х0(х0-любое число) имеет предел, равный С, т.е. lim (x®x0)C=C

Возьмем любое e>0. Тогда для любого числа d>0 выполняется треюуемое неравенство ½f(x)-C½=½C-C½=0<e, => lim(x®x0)C=C

Свойства пределов. Непрерывность ф-ции.

Теорема. Пусть ф-ции f(x) и g(x) имеют в т-ке х0 пределы В и С. Тогда ф-ции f(x)±g(x),f(x)g(x) и f(x)/g(x) (при С¹0) имеют в т-ке х0 пределы, равные соответственно В±С, В*С, В/С, т.е. lim[f(x)±g(x)]= B±C, lim[f(x)*g(x)]= B*C, lim[f(x)/g(x)]= B/C

Теорема также верна если х0 явл. +¥, -¥, ¥

Опр. Ф-ция f(x) наз-ся непрерыной в точке х=х0, если предел ф-ции и ее значение в этой точке равны, т.е. lim(x®x0)f(x)=f(x0)

Теорема Пусть ф-ции f(x) и g(x) непрерывны в т-ке х0. Тогда ф-ции f(x)±g(x), f(x)*g(x) и f(x)/g(x) также непрерывны в этой т-ке.

10. Предел. Односторонний предел.

Опр. Числом А наз-ся предел f(x) в т-ке х0, если для любой окрестности А$ окрестность (х0):"xÎокрестности (x0) выполняется условие f(x)Îокрестности.

Теорема Все определения предела эквивалентны между собой.

Опр. Число А называется пределом ф-ции f(x) справа от т.х0(правым предело f(x0)) если f(x)®A при х®х0, х>x0

Формально это означает, что для любой посл-ти сходящейся к х0 при xn>x0 выполняется условие f(xn)®A

Запись: f(x0+o), f(x0+). lim(x®x0+o)f(x) где запись x®x0+o как раз означает стремление к х0 по мн-ву значений >чем х0.

Опр. Предел слева аналогично и исп-ся запись f(x0-o);f(x0-)

Теорема. Для того чтобы ф-ция f(x) имела предел в точке х0 необходимо и достаточно когда в этой т-ке ф-ция имеет совпадающие между собой одностороние пределы (f(x0+)=f(x0-)) значение которые равны пределу ф-ции, т.е. f(x0+)=

f(x0-)=lim(x®x0)f(x)=A

Док-во

а) допустим ф-ция имеет в точке х0 предел равный А, тогда f(x)® А независимо от того, приближается ли х к х0 по значению > x0 или <, а это означает равенство 1.

б) пусть односторонние пределы сущ-ют и равны f(x0+)=f(x0-) докажем, что $ просто предел. Возьмем произвольную {xn}®х0 разобьем если это необходимо эту последовательность на две подпоследовательности.

1. члены которые нах-ся слева от х0 {x‘n};

2. члены которые нах-ся справа от х0 {х‘‘n};

x’n®x0-o x’’n®x0+o, т.к. односторонние пределы $ и равны, то f(x‘n)®A и f(x‘‘n)®A поэтому посл-ть значений ф-ций {f(xn)} которая также след. справа:

1){f(x‘n)} и {f(x‘‘n)} имеет f(xn)®A на основании связи между сходимостью последовательностей

Пределы функции на бесконечности

Два замечательных предела

Бесконечно малые фуекции и их сравнения

Непрерывные функции. Непрерывность.

Они нужны для исследования поведения ф-ции на переферии.

Опр. ф-ция f(x) имеет предел число А при x®+¥ если " {xn} которая ®к +¥ соответствующая ей последовательность {f(xn)}®A в этом случае мы пишем lim(x®+¥)f(x)=A. Совершенно аналогично с -¥.

Опр. Будем говорить что ф-ция f(x) имеет пределом число А при x®¥ {f(xn)} сходится к А

Бесконечные пределы ф-ции

Вводятся как удобные соглашения в случае, когда конечные пределы не $-ют.

Р-рим на премере: lim(x®o+)(1/x)

Очевидно не сущ-ет, т.к. для " {xn}®+о посл-ть {f(xn)}={1/xn}, а числ. посл-ть сводятся к +¥.

Поэтому можно записать lim(x®o+)1/x=+¥ что говорит о неограниченных возрастаниях предела ф-ции при приближении к 0.

Аналогично с -¥.

Более того символы +¥ и -¥ употребляются в качестве предела ф-ции в данной т-ке лишь условно и означают например, что если {xn}®x0 то {f(xn)}®±¥,¥

 

12. Два замечательных предела

1) lim(x®0)sin/x=1

2) Явл. обобщением известного предела о посл-ти. Справедливо сл. предельное соотношение:

lim(n®¥)(1+1/n)^n=e (1)

lim(n®0)(1+x)^1/x=e (2)

t=1/x => при х®0 t®¥ из предела (2) => lim(x®¥) (1+1/x)^x=e (3)

Док-во

1)x®+¥ n x:n=[x] => n£x<n+1 => 1/(n+1)<1/x<1/n

Посколько при ув-нии основания и степени у показательной ф-ции, ф-ция возрастает, то можно записать новое неравенство (1/(n+1))^n£(1+1/n)^x£ (1+1/n)^(n+1) (4)

Рассмотрим пос-ти стоящие справа и слева. Покажем что их предел число е. Заметим (х®+¥, n®¥)

lim(n®¥)(1+1/(n+1))=lim(n®¥)(1+1/(n+1))^n+1-1= lim(n®¥)(1+1/(n+1))^n+1*lim(n®¥)1/(1+1/(n+1))=e

lim(n®¥)(1+1/n)^n+1= lim(n®¥)(1+1/n)^n* lim(n®¥)(1+1/n)=e*1=e

2) x®-¥. Сведем эту ситуацию к пред. Случаю путем замены переменной y=-x => y®+¥, при x®-¥.

lim(x®-¥)(1+1/x)^x=lim(y®+¥)(1-1/y)^-y= lim(y®+¥)((y-1)/y)^y=lim(y®+¥)(1+1/(y-1))^y=e

3) Пусть x®¥ произвольным образом это означает при любом любом выборе посл-ти xn сходящихся к ®¥ мы должны иметь в силу (3) соотношение lim(x®¥)(1+1/xn)^xn=e (5)

Условие 5~3, т.е расшифровка 3 на языке посл-ти. Выделим из посл-ти xn 2 подпосл-ти: {x‘n}®+¥,

{x‘‘n}®-¥. Для каждой посл-ти по доказанному в п.1 и п.2 справедливо предельное соотношение 5 если заменить xn®x‘nx‘‘n. По т-ме о связи

 

<== предыдущая лекция | следующая лекция ==>
Конспект по математическому анализу | Непрерывные ф-ции. Непрерывность
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 585; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.094 сек.