Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Дифференцирование ф-ций

Классификация т-ки разрыва

Все т-ки р-рыва делятся на 3 вида: т. устранимого р-рыва; точки р-рыва 1-го, и 2-го рода.

а) если в т-ке х0 $ оба односторонних предела, которые совпадают между собой f(x0+)= f(x0-), но ¹ f(x0), то такая т-ка наз-ся точкой устранимого р-рыва.

Если х0 т-ка устранимого р-рыва, то можно перераспределить ф-цию f так чтобы она стала непр. в т-ке х0. Если по ф-ции f построить новую ф-цию положив для нее знач. f(x0)= f(x0-)=f(x0+) и сохранить знач. в др. т-ках, то получим исправл. f.

б) если в т-ке х0 $ оба 1-стороних предела f(x0±), которые не равны между собой f(x0+)¹f(x0-), то х0 наз-ся т-кой р-рыва первого рода.

в) если в т-ке х0 хотя бы 1 из односторонних пределов ф-ции не $ или бесконечен, то х0 наз-ся т-кой р-рыва 2-го рода.

При исслед. Ф-ции на непр. классификации возможных т-к р-рыва нужно применять во внимание сл. замечания:

1) Все элементарные ф-ции непрер. во внутренних т-ках своих областей определения => при исл. элементарных ф-ций нужно обращать внимание на гранич. т-ки обл-ти опр-ния.

2) Если ф-ция задана кусочно, т.е. различными соотношениями на частях своей обл. опр., то подозрительными на разрыв явл. граничные т-ки частей обл-ти опр.

3) Св-ва непр. ф-ций. Многие св-ва непр. ф-ций легко понять опираясь на их геометр. св-ва:

график непр. ф-ции на пр-ке D представляет сплошную(без р-рывов) кривую на пл-тях и след-но может отображена без отрыва ручки от бумаги.

I) Ф-ция непр. в т-ке х0 обязательно ограничена в окрестностях этой т-ки.(св-во локал. огранич-ти)

Док-во использует опр-ние на языке e и d. Если f непр. в т-ке х0 то взяв любое e>0 можно найти d>0 ½f(x)-f(x0)½<e при ½х-х0½<d ~ f(x0)-e<f(x)<f(x0)+e в окрестности в т-ке х0.

II) Св-ва сохранения знака Если f(x) непр. в т-ке х0 и f(x0)¹0 то $ окрестность этой т-ки в которой ф-ция принимает тот же знак что и знак х0.

III) Теорема о промежуточных знач. ф-ции f(x) непр. на отрезке [a,b] и f(a)=A, f(b)=B причем A¹B => CÎ(A,B) $ cÎ(a,b):f(c)=C f(c)=f(c‘)=f(c‘‘).

IV) Теорема о прохожд. непр. ф-циичерез 0. Если f(x) непр. на отрезке (a,b) и принимает на концах этого отрезка значение разных знаков f(a) f(b), то $ т-ка сÎ(a,b).

Док-во Одновременно содержит способ нах-ния корня ур-ния f(x0)=0 методом деления отрезка пополам. f(d)=0 c=d Т-ма доказана.

Пусть f(d)¹0 [a,d] или [d,b] ф-ция f принимает значение разных знаков. Пусть для определ-ти [a,d] обозначим через [a1,b1]. Разделим этот отрезок на 2 и проведем рассуждение первого шага док-ва в итоге или найдем искомую т-ку d или перейдем к новому отрезку [a2,d2] продолжая этот процесс мы получим посл-ть вложения отрезков [a1,b1]>[a2,b2] длинна которых (a-b)/2^n®0, а по т-ме о вл-ных отрезков эти отрезки стягиваются к т-ке с. Т-ка с явл. искомой с:f(c)=0. Действительно если допустить, что f(c)¹0 то по св-ву сохр. знаков в некоторой d окрестности, т-ке с f имеет тот же знак что и значение f(c) между тем отрезки [an,bn] с достаточно N попабают в эту окрестность и по построению f имеет разный знак на концах этих отрезков.

 

Непр. ф-ции на пр-ке

f непр. в т-ке х0 => f непрер. в т-ке х0 и f(x0)¹0 => f непр. на [a,b] и f(x)*f(b)=0 (f(x)*f(b)>0 в окр-ти х0) => $ сÎ(a,b). f(c)=0 сл-но 2 св-ва непр. ф-ции на отрезке обоснованны.

Т-ма 1(о огран. непр. ф-ции на отрезке). Если f(x) непр. на [a,b], тогда f(x) огран. на этом отрезке, т.е. $ с>0:½f(x)½£c "xÎ(a,b).

Т-ма 2 (о $ экстр. непр. ф-ции на отр.). Если f(x) непр. на [a,b], тогда она достигает своего экстр. на этом отрезке, т.е. $ т-ка max X*:f(x*)³f(x) "xÎ[a,b], т-ка min X_:f(x_)£f(x) "xÎ[a,b].

Теорема ВЕЙЕРШТРАССА. Эти теремы неверны если замкнутые отрезки заменить на др. пр-ки

Контрпример 1. f(x)=1/2 на (0;1] ® f – неогр. на (0;1] хотя и непрерывны.

Контрпример 2. f(x)=x; на (0;1) f(x) – непр. inf(xÎ(0;1))x=0, но т-ки x_Î(0;1):f(x_)=0, т-ки x*, хотя sup(xÎ(0;1))x=1

Док-во т-мы 1. Используем метод деления отрезка пополам. Начинаем от противного; f неогр. на [a,b], разделим его, т.е. тогда отрезки [a;c][c;b] f(x) неогр.

Обозн. [a1,b1] и педелим отрез. [a2,b2], где f-неогр. Продолжая процедуру деления неогр. получаем послед. влож. отрезки [an;bn] котор. оттяг. к т-ке d (d=c с надстройкой) из отрезка [a,b], общее для всех отр. Тогда с одной стороны f(x) неогр. в окр-ти т-ки d на конц. отрезка [an,bn], но с др. стороны f непр. на [a,b] и => в т-ке d и по св-ву она непр. в некоторой окрестности d. Оно огран. в d => получаем против. Поскольку в любой окр-ти т-ки d нах-ся все отрезки [an;bn] с достаточно большим 0.

Док-во т-мы 2. Обозначим E(f) – множиством значений ф-ии f(x) на отр. [a,b] по предыд. т-ме это мн-во огран. и сл-но имеет конечные точные грани supE(f)=supf(x)=(при хÎ[a,b])=M(<¥). InfE(f)= inff(x)=m(m>-¥). Для опр. докажем [a,b] f(x) достигает макс. на [a,b], т.е. $ х*:f(x)=M. Допустим противное, такой т-ки не $ и сл-но f(x)<M "xÎ[a,b] рассмотрим вспомогат. ф-цию g(x)=1/(M-f(x) при хÎ[a,b]. g(x) – непр. как отношение 2-х непр. ф-ций и то знач. 0 согластно т-ме 1 g(x)- огран. т.е. $ c>0

!0<g(x)£c g³0, на [a,b] – 1/(M-f(x))£c => 1£c(M-f(x)) => f(x) £M-1/c "xÎ[a,b]

Однако это нер-во противор., т.к. М-точная верхн. грань f на [a,b] а в правой части стоит “C”

Следствие: если f(x) непр. [a,b]тогда она принимает все знач. заключ. Между ее max и min, т.е. E(f)=[m;M], где m и M –max и min f на отрезке.

 

Дифференцирование функций

Производные и дифференциалы высших порядков.

Теорема Ферма Теорема Ролля Теорема Лагранджа Теорема Коши Правило Лопиталя

Центральная идея диффер. ф-ций явл-ся изучение гладких ф-ций (без изломов и р-рывов кривые) с помощью понятия пр-ной или с помощью линейных ф-ций y=kx+b обладает простейшими наглядн. ф-циями; у=k‘ => k>0 то у возр. при всех х, k<0-то у убыв. при всех х, k=0 – ф-ция постоянна

Определение пр-ной

1) Пусть ф-ция y=f(x) определена по крайней мере в окр-тях т-ки х0, таким приращения Dх эл-нт. Составим соотв. ему приращения ф-ции т-ки х0. Dy=Df(x0)=f(x0+Dx)-f(x0)

Образуем разностное отношение Dy/Dx=Df(x0)/Dx (1) (это разностное отношение явл. ф-цией Dх, т.к. х0-фиксирована, причем при Dх®0 мы имеем дело с неопр. 0/0).

Опр. Пр-ной ф-ции y=f(x) наз-ся предел разностного отношения 1 (при условии если он $), когда Dх®0. Производная это предел отношения приращения в данной т-ке к приращению аргумента при усл., что посл-ть ® к 0. Эта производная обозначается через df(x0)/dx или f‘(x0), у‘ (если данная т-ка х0 подразумевается или же речь идет о пр-ной в любой текущей т-ке х. Итак согласно определению f‘(x0)=lim(Dx®0) (f(x0+Dx)-f(x0))/Dx (2)

Если ф-ция f(x) имеет в т-ке х0 пр-ную, т.е. предел в правой части (2) $, то говорят что f(x) дифференц. в т-ке х0.

<== предыдущая лекция | следующая лекция ==>
Непрерывные ф-ции. Непрерывность | Непрерывность и дифференцируемость
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 419; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.