Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Частотные характеристики импульсных систем




 

Частотные характеристики импульсных систем определяются аналогично обыкновенным линейным системам.

Выражения для частотных характеристик импульсных систем получаются из их передаточных функций путем замены оператора z на ejwT. Так как частота w входит в показатель степени числа e, то частотные характеристики являются периодическими функциями частоты, период изменения которых равен ±p/T. Следовательно, нельзя различить составляющие, частоты которых кратны частоте квантования импульсного элемента w0 = 2p/Т.

Таким образом, частотная передаточная функция разомкнутой импульсной системы имеет вид:

. (1.77)

 

Функция W(ejwT,s) представляет собой комплексный спектр дискретной передаточной функции разомкнутой импульсной системы W(z,s) и полностью характеризует частотные свойства разомкнутой системы, т.е. позволяет вычислить установившуюся реакцию системы на решетчатое гармоническое воздействие g[nT] = gm sin[wnT] произвольной частоты w.

Как и для обыкновенных линейных систем, рассматривают амплитудную, фазовую, вещественную и мнимую частотную характеристики:

A(w,s) = mod W(ejwT,s);

y(w,s) = arg W(ejwT,s);

U(w,s) = Re W(ejwT,s);

V(w,s) = Im W(ejwT,s).

 

Свойства частотных характеристик импульсных систем [13].

1. Кроме зависимости от частоты w характеристики зависят от относительного времени s. Графически это выражается серией кривых для различных значений s. Обычно достаточно одной характеристики при s = 0.

2. В соответствии с периодичностью частотной передаточной функции амплитудно-фазовая частотная характеристика W(ejwT) полностью определяется своими значениями в интервале -p¤ Т £ w £ p¤ Т.

3. Так как вещественная частотная характеристика является четной функцией, а мнимая - нечетной, то достаточно рассматривать интервал частот 0 £ w £ p¤ Т.

4. В крайних точках интервала 0 £ w £ p¤ Т амплитудно-фазовая частотная характеристика принимает вещественные значения.

5. При уменьшении периода дискретности T, т.е. при увеличении частоты квантования w0 = 2p/Т, частотные характеристики импульсных систем приближаются к частотным характеристикам непрерывных систем. При этом частотный интервал 0 £ w £ p¤ Т растягивается на всю ось w при T ® 0.

Амплитудно-фазовая частотная характеристика разомкнутой импульсной системы W(ejwT) строится по точкам в интервале частот 0 £ w £ p¤ Т.

Частотные характеристики импульсных систем, как следует из (1.77), описываются трансцендентными выражениями. Их определение связано со сложными расчетами, поэтому на практике применяются частотные характеристики относительно абсолютной псевдочастоты l. Переход к псевдочастоте основан на переходе от z-преобразования к w -преобразованию с помощью подстановки

 

(1.78)

 

c последующей заменой комплексной переменной w на абсолютную псевдочастоту

w = jlT/2. (1.79)

 

При этом реальная частота w и псевдочастота l связаны соотношением

(1.80)

Удобство псевдочастоты заключается в том, что, как следует из (1.80), на частотах где выполняется условие wT < 2, она приближенно равна угловой частоте, т.е. l» w. Нетрудно убедиться, что при изменении частоты от -p¤ Т до +p¤ Т псевдочастота принимает значение -¥ до +¥.

Для перехода от дискретной передаточной функции разомкнутой импульсной системы W(z) к частотной характеристике W(jl) следует сделать замену

, (1.81)

то есть

(1.82)

 

Полученное уравнение может быть использовано для построения логарифмических частотных характеристик.

Приближенный способ построения ЛЧХ импульсных систем [2]. Для удобства логарифмические частотные характеристики строятся отдельно для областей низких и высоких частот. Границей, разделяющей частотную область на низкочастотную и высокочастотную, служит частота среза wс в предположении, что

(1.83)

где Т - период дискретности.

Последнее условие необходимо выполнять вследствие требований, предъявляемых к обеспечению запаса устойчивости и точности работы системы, и согласуется с теоремой Котельникова-Шеннона.

Рассмотрим методику построения ЛЧХ на примере АИС, включающей в себя экстраполятор нулевого порядка и непрерывную часть с передаточной функцией:

. (1.84)

При построении вводят следующие предположения.

1. Величина, обратная периоду дискретности T, больше половины частоты среза wс, т.е. wс < 2/T.

2. Переход оси нуля децибел асимптотической ЛАХ непрерывной части происходит при отрицательном наклоне -20 дб/дек.

3. Постоянным времени tj (j = 1, 2,..., m) соответствуют сопрягающие частоты меньшие, чем частота среза.

4. Имеется l (l < n) постоянных времени Ti (i = 1, 2,..., l), которым соответствуют сопрягающие частоты меньшие, чем частота среза.

При принятых допущениях для области низких частот передаточную функцию непрерывной части можно представить в виде

 

(1.85)

а для области высоких частот

(1.86)

По выражениям (1.85) и (1.86) на основании (1.64) и (1.82) получим частотные характеристики разомкнутой импульсной системы для области низких частот

(1.87)

и для области высоких частот

(1.88)

где =.

Сравнение выражения (1.87) с (1.85) показывает, что в низкочастотной области частотная передаточная функция импульсной системы может быть получена из передаточной функции непрерывной части подстановкой s = jl и умножением на дополнительный множитель (1 - jlT/2). Псевдочастота l в этой области практически совпадает с угловой частотой w. Влиянием дополнительного множителя при построении частотных характеристик в низкочастотной области можно пренебречь, так как wс < 2/T.

Таким образом, в области низких частот частотные характеристики импульсной системы совпадают с частотными характеристиками ее непрерывной части.

Начало логарифмических частотных характеристик в высокочастотной области (1.88) сливается с концом частотных характеристик, построенных в низкочастотной области. На основании (1.87) и (1.88) можно записать выражение результирующей частотной передаточной функции разомкнутой АИС

(1.89)

где =.

Это выражение представляет собой произведение элементарных типовых сомножителей, поэтому его легко использовать для построения логарифмических частотных характеристик импульсных систем. Результирующий фазовый сдвиг определяется как

 

Пример. Построить логарифмические частотные характеристики АИС с экстраполятором нулевого порядка и периодом дискретности импульсного элемента T = 4 с, передаточная функция непрерывной части которой

 

.

 

Р е ш е н и е. Выбираем частоту среза wc < 2/T < 0.5 c-1. В соответствии с заданными постоянными времени определяем сопрягающие частоты:

wcопр1=1/25=0.04 c-1 - низкочастотный диапазон;

wcопр2=1/0.5=2 c-1 - высокочастотный диапазон;

wcопр3=1/0.3=3.33 c-1 - высокочастотный диапазон.

 

Следовательно, получаем:

,

где Tå = Т12=0.8;

 

,

 

lсопр1=1/25=0.04;

lсопр2=1/2=0.5;

lсопр3=1/1.2=0.8.

 

Асимптотические ЛАХ и ЛФХ, соответствующие полученным выражениям, представлены на рис. 1.12.

 

 

Рис. 1.12. ЛЧХ импульсной системы





Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 997; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.