Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Определение 7




Эллипс — это фигура, которую можно получить из круга, применяя аффинное преобразование.

Задача 24[10]

Докажите, что эти два определения эллипса равносильны.


Подсказка: Эта задача включает в себя две задачи. Сначала нужно показать, что из первого определения следует утверждение второго определения, потом наоборот. Вторая часть сложнее, так как для неё необходимо иметь представление о всех возможных аффинных преобразованиях.

Задача 25[10]

Докажите, что применяя движения, растяжения и сжатия относительно прямых, можно получить любое аффинное преобразование.

Подсказка: Решите сначала следующие три задачи.

Задача 26[10]

Пусть дана прямая и точка на ней. Преобразование — произвольное аффинное преобразование. Докажите, что после аффинного преобразования можно применить движение (параллельный перенос и поворот) так, что в итоге получится преобразование, которое точку оставляет неподвижной и переводит прямую в себя.

Задача 27[10]

Пусть даны две пересекающиеся в точке прямые и . Докажите, что после произвольного аффинного преобразования можно применить движение и сжатие (или растяжение) относительно прямой так, что в итоге получится преобразование, которое эти прямые переводит в себя.

Подсказка: Первым делом, совместите биссектрисы углов между прямыми , и прямыми , , а также точки их пересечения. Применяйте сжатие (растяжение) вдоль этих биссектрис.

Задача 28[10]

Пусть даны две перпендикулярные прямые и , пересекающиеся в точке . Докажите, что после произвольного аффинного преобразования можно применить движение и несколько сжатий или растяжений относительно прямых так, что в итоге получится преобразование, которое все точки на этих прямых переводит в себя.


Задача 29[10]

Докажите, что если аффинное преобразование сохраняет неподвижными все точки на двух пересекающихся прямых, то это преобразование все остальные точки плоскости тоже оставляет неподвижными.


Задача 30[8]

Докажите, что из любой трапеции афинными преобразованиями можно сделать равнобокую трапецию.


Задача 31[8]

Докажите, что из любого прямоугольника можно сделать квадрат.


Задача 32[8]

Докажите, что из любого треугольника можно сделать прямоугольный треугольник.


Задача 33[8]

Докажите, что из любого параллелограмма можно сделать квадрат.


Определение 8.

Парабола — это фигура, которая в подходящих координатах имеет уравнение

Задача 34[11]

Докажите, что множество всех парабол — это множество всех фигур, которые можно получить из параболы при помощи аффинных преобразований.


Определение 9.

Гипербола — это фигура, которая в подходящих координатах имеет уравнение

или

Задача 35[11]

Докажите, что множество всех гипербол — это множество все фигур, которые можно получить из гиперболы при помощи аффинных преобразований.

 




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 486; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.