Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пример. Уравнение сферы




Сферой в пространстве называется множество точек равноудаленных от заданной точки М000;z0) – центра сферы.

Пусть М(х;у;z) – некоторая переменная точка сфера. Расстояние от точки М до центра М0 постоянно и равно радиусу сферы, т.е. d(M0M)=const=R

R=

R2=(x-x0)2+(y-y0)2+(z-z0)2 – уравнение сферы.

Уравнения линия в пространстве R3.

Линия в пространстве определяется как пересечение двух поверхностей, т.е. как геометрическое место точек, находящихся одновременно на двух поверхностях.

(9) – общее уравнение линии в пространстве.

Линию как пересечение двух поверхностей в пространстве можно представить бесчисленным числом способов. Т.е. вместо системы (9) можно взять любую эквивалентную систему.

Параметрические уравнения линии и поверхности в пространстве.

Ли нию в пространстве можно так же задать параметрически:

(10)

где функции j(t), y(t) и c(t) определены и непрерывны в некотором промежутке изменения параметра t.

Покажем, что этот способ определения линии в пространстве эквивалентен определению линии как пересечения двух поверхностей.

Допустим, что хотя бы одна из трех функций, например c(t), имеет обратную. Тогда t=c-1(z) подставляя это значение вместо t в первые два равенства (10), получим уравнения двух поверхностей x=j(c-1(z)), y=y(c-1(z)),

пересечением которых является данная линия.

Пример (с.115).

Классификация поверхностей.

Определение 1. Поверхность называется алгебраической, если в некоторой декартовой прямоугольной системе координат, если она определяется алгебраическим уравнением F(x;y;z)=0 с тремя переменными.

Определение 2. Всякая не алгебраическая поверхность называется трансцендентной.

Определение 3. Алгебраическая поверхность называется поверхностью порядка n, если в некоторой декартовой прямоугольной системе координат она определяется алгебраическим уравнением степени n с тремя переменными.

Установлению корректности определений 1,2,3 способствует следующая теорема.

Теорема (док-во на с.117). Если поверхность в некоторой декартовой прямоугольной системе координат определяется алгебраическим уравнением степени n, то эта поверхность и в любой другой декартовой прямоугольной системе координат определяется алгебраическим уравнением той же степени n.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 1518; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.