Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Элементы памяти БИС ОЗУ, ПЗУ

Элементы памяти статистического ОЗУ. ЭП биполярного ОЗУ представляет собой асинхронный RS-триггер, построенный из двух логических элементов И-НЕ, выполненных на двух двухэмиттерных транзисторах (рис. 8.3).

ЭП подключен к двум разряд-ным линиям РЛ “0” и РЛ “1” и адресной линии АЛ. В зави-симости от комбинации на-пряжений на этих линиях ЭП может работать в режимах хранения, записи и считыва-ния информации.

Если, например, транзис-тор Т1 открыт, то низкий по-тенциал его коллектора пода-ется на базу транзистора Т2 и поддерживает его закрытое состояние. Высокий потен-циал коллектора закрытого Т2, в свою очередь, поддерживает открытое состояние транзистора Т1. В состоянии хранения по линии адреса АЛ поддерживается низкий потенциал.

Пусть ЭП хранит нуль 0, если Т2 закрыт, а Т1 – открыт. Тогда для записи единицы 1 необходимо одновременно подать высокие уровни в линии АЛ и РЛ “0” и низкий уровень в линию РЛ “1”. Тогда транзистор Т1 закрывается, а Т2 – открывается. Для считывания информации в адресную линию АЛ подается высокий уровень. При этом в транзисторе, находящемся в открытом состоянии, происходит перераспределение токов эмиттеров, и большая часть тока будет течь в разрядной линии РЛ “1”, если считывается 1, или в РЛ “0” – если считывается 0.

Биполярные SRAM обладают наивысшим быстродействием, однако по сравнению с SRAM, выполненными по МОП-технологиям, имеют значительно большее энергопотребление. Это объясняется тем, что МОП-транзистор занимает в несколько раз меньшую площадь на кристалле, чем биполярный, и потребляет меньший ток. Последние достижения МОП-технологий обеспечивают приближение МОП ЗУ по быстродействию к биполярным.

Наименьшим энергопотреблением отличаются ЗУ, выполненные на комплементарных МОП-транзисторах (КМОП-технология). В ЭП КМОП-типа (рис.8.4) транзис-торы Т1 и Т2 имеют каналы p -типа, а транзисторыТ3 – Т6- каналы n -типа.

В результате потребляемая мощность в режиме хранения определяется токами утечки ка-налы n - и p -переходов. В режи-ме переключения требуется зна-чительно бóльшая мощность, так как при этом ток протекает через оба приоткрытых транзис-тора Т1, Т4 и Т2, Т5. Однако, расходуемая мощность КМОП ЗУ на порядок меньше, чем у биполярных.

Элемент памяти динамического ОЗУ. Накопитель занимает большую часть площади кристалла микросхем памяти, поэтому для увеличения их информационной емкости необходимо уменьшать размеры ЭП. Это достигается при использовании динамического способа хранения информации в виде заряда, накопленного на паразитной емкости. Обычно динамические ЭП реализуются на МДП-транзисторах, так как при этом обеспечивается достаточно длительное время хранения информации (приблизительно 10 миллисекунд) без ее регенерации.

Один из вариантов трех-транзисторного динамического ЭП с раздельными шинами для записи и считывания показан на рис. 8.5. Информация хранится в виде заряда емкости CЗ ≈ 0,1 пф. В процессе записи от РЛ З при разрешающем высоком потен-циале на АЛ З через открытый транзистор Т2 заряжается ем-кость CЗ до потенциала РЛ З, соответствующего U 0 или U 1. По окончании сигнала адреса на АЛ З транзистор Т2 запирается и ЭП переходит в режим хранения информации.

Считывание информации производится на разрядной линии РЛсч, находящейся под высоким потенциалом U 1, при подаче на адресную линию считывания АЛсч высокого потенциала, которым открывается транзистор Т3. Если ЭП находится в единичном состоянии (CЗ заряжена до потенциала до U 1), то транзистор Т1 также будет открыт и потенциал разрядной линии снизится до потенциала U 0. Если емкость CЗ была заряжена до потенциала U 0, то транзистор Т1 будет находиться в закрытом состоянии и потенциал РЛсч останется неизменным, т. е. равным U 1.

Чтобы избежать потери информации из-за уменьшения с течением времени заряда емкости C З, производится его периодическая регенерация (восстановление).

В режиме регенерации сигналы выборки подаются на обе адресные линии АЛсч и АЛЗ. Сигналы, считанные с выхода каждого ЭП выборкой строки, через усилители-регенераторы подаются на их входы, и восстанавливают потенциал емкости до первоначальной величины. Так одновременно производится регенерация информации в одной из строк накопителя.

Для выполнения полной регенерации необходимо на адресные входы последовательно подать адреса всех строк. Для большинства микросхем регенерацию необходимо производить с частотой порядка десятков-сотен герц.

Еще меньшую площадь на кристалле занимает однотранзисторный ЭП (рис. 8.6).

Хранение информации осу-ществляется на емкости CЗ, а транзистор Т1 выполняет роль ключа выборки, который откры-вается высоким потенциалом адресной линии АЛ. При записи в РЛ подается потенциал U 0 или U 1, в зависимости от посту-пающего на микросхему сигна-ла: DI равного 1 или 0. Такой же потенциал устанавливается на емкости CЗ и сохраняется на ней после окончания выборки, когда транзистор Т1 закрыт. Сохранность информации при считывании обеспечивается усилителем-регенератором

Динамические микросхемы памяти обеспечивают наиболее высокую информационную емкость при достаточно хороших значениях других параметров. Однако, необходимость регенерации информации усложняет структуру ЗУ на их основе и требует дополнительных временных затрат. Современные динамические микросхемы памяти имеют внутреннюю регенерацию, которая реализуется в промежутках времени между выборками.

Элементы памяти ПЗУ (РПЗУ). Основное требование к такой ячейке – сохранение информации при отключенном питании. Рассмотрим схему однотранзисторного ЭП для биполярного ПЗУ
(рис. 8.7).

В эмиттерной цепи транзис-тора предусмотрена плавкая перемычка (П), которая в необходимых случаях может разрушаться при первоначальном программировании.

При обращении к ЭП по адрес-ной линии в случае неразрушенной перемычки в РЛ будет протекать эмитерный ток транзистора. В случае разрушенной перемычки ток протекать не будет.

Элемент памяти ПЗУ может быть выполнен и на МОП-транзисторах. Однако биполярные ПЗУ имеют более высокое быстродействие (время обращения 20…60 нс), но и большую рассеиваемую мощность, чем ПЗУ на МОП-транзисторах (время обращения 200…600 нс).

Репрограммируемые ПЗУ в настоящее время выполняются двух типов. В РПЗУ первого типа (EEPROM) матрица элементов памяти изготавливается аналогично матрице ПЗУ на основе МОП-транзисторов, но у которых между металлическим затвором и слоем изолирующего окисла осаждается тонкий слой нитрида кремния (МНОП-транзисторы). Нитрид кремния способен захватывать и сохранять длительное время (до 10 лет и более) электрический заряд. В исходном состоянии транзистор имеет высокое напряжение открывания (10…15)В, которое понижается до рабочих уровней после зарядки слоя нитрида кремния. Чтобы зарядить слой нитрида кремния, на затвор МНОП-транзистора подается высоковольтный программирующий импульс, по амплитуде в несколько раз превышающий рабочие уровни напряжений (15…20)В. При подаче сигнала на адресную линию, подключенную к затворам транзисторов, происходит открывание только заряженных транзисторов. Таким образом, наличие заряда приводит к тому, что ЭП хранит 0, а его отсутствие – 1.

Для стирания записанной информации, т.е. удаления заряда захваченного слоем нитрида кремния, на затвор МНОП-транзистора необходимо подать импульс напряжения противоположный, чем при записи полярности.

Другие варианты ЭП РПЗУ выполняются на МНОП-транзисторах с плавающим (изолированным) затвором. Подача высокого напряжения между истоком и стоком вызывает накопление в плавающем затворе заряда, создающего проводящий канал между стоком и истоком. Стирание информации осуществляется облучением транзисторов через кварцевое окно ультрафиолетовым излучением, которое разряжает затворы транзисторов и переводит их в непроводящее состояние.

Стирание информации таким способом имеет ряд очевидных недостатков, которые отсутствуют при электрическом стирании. Для устранения этого в транзисторе выполняется второй управляющий затвор. Однако, ввиду большей площади ЭП, микросхемы РПЗУ с электрическим стиранием имеют в 2…4 раза меньшую информационную емкость, чем микросхемы со стиранием ультрафиолетовым светом.

Параметры интегральных ЗУ. В номенклатуру параметров ЗУ входят следующие основные величины:

Информационная емкость в битах – параметр, характеризующий степень интеграции.

Удельная мощность – общая мощность, потребляемая в режиме хранения, отнесенная к 1 биту.

Максимальная частота обращения при считывании.

Удельная стоимость одного бита информации. Этот параметр – один из определяющих при сравнительных оценках.

МОП – транзисторные ОЗУ в целом превышают биполярные по информационной емкости, удельной мощности и удельной стоимости, но уступают им по быстродействию. Минимальная удельная мощность свойственна КМОП-схемам, а минимальная стоимость – динамическим типам ОЗУ. Среди биполярных разновидностей максимальное быстродействие характерно ОЗУ в базисе ЭСЛ.


9. ПРИНЦИПЫ СОЗДАНИЯ БОЛЬШИХ ИНТЕГРАЛЬНЫХ ЦИФРОВЫХ СХЕМ

В настоящее время цифровая электроника в подавляющем большинстве базируется на больших и сверхбольших интегральных схемах. В то же время можно сказать, что в основе БИС и СБИС лежит интеграция простых ИС.

<== предыдущая лекция | следующая лекция ==>
Структура микросхем памяти | Общие сведения. Общая характеристика БИС
Поделиться с друзьями:


Дата добавления: 2014-01-15; Просмотров: 3286; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.