Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Примеры шин




 

Шины соединяют компьютерную систему в одно целое.

 

Шина ISA

 

Шина IBM PC была неофициальным стандартом систем с процессором 8088, поскольку практически все производители клонов скопировали ее, чтобы иметь возможность использовать в своих системах платы ввода-вывода от различных поставщиков. Шина содержала 62 сигнальные линии, из них 20 для адреса ячейки памяти, 8 для данных и по одной для сигналов считывания информации из памяти, записи информации в память, считывания с устройства ввода-вывода и записи на устройство ввода-вывода. Имелись и сигналы для запроса прерываний и их разрешения, а также для прямого доступа к памяти. Шина была очень примитивной.

Когда компания IBM разрабатывала компьютер PC/AT с процессором 80286, она столкнулась с некоторыми трудностями, связанными с взаимодействием нового процессора со старой шиной и несоответствием их производительности.

В результате было принято решение расширить старую шину. Сменные платы персональных компьютеров содержали краевой разъем (62 контакта), но этот краевой разъем проходил не по всей длине платы. Поэтому на плате поместили еще один краевой разъем, смежный с главным. Кроме того, схемы PC/AT были разработаны таким образом, чтобы можно было подсоединять платы обоих типов.

Второй краевой разъем шины PC/AT содержит 36 линий. Из них 31 предназначена для дополнительных адресных линий, информационных линий, линий прерывания, каналов ПДП (прямого доступа к памяти), а также для питания и «земли». Остальные связаны с различиями между 8-битными и 16-битными передачами. Когда компания IBM выпустила серию компьютеров PS/2, пришло время начать разработку шины заново. С одной стороны, это решение было обусловлено чисто техническими причинами (шина PC к тому времени уже устарела). Но с другой стороны, оно было вызвано желанием воспрепятствовать компаниям, выпускавшим клоны, которые в то время заполонили компьютерный рынок. Поэтому компьютеры PS/2 с высокой и средней производительностью были оснащены абсолютно новой шиной MCA (MicroChannel Architecture), которая была защищена патентами.

Компьютерная промышленность отреагировала на такой шаг введением своего собственного стандарта, шины ISA (Industry Standard Architecture — стандартная промышленная архитектура), которая, по существу, представляет собой шину PC/AT, работающую при частоте 8,33 МГц. Преимущество такого подхода состоит в том, что при этом сохраняется совместимость с существующими машинами и платами.

Позднее шина ISA была расширена до 32 разрядов. У нее появились некоторые новые особенности (например, возможность параллельной обработки). Такая шина называлась EISA (Extended Industry Standard Architecture — расширенная архитектура промышленного стандарта). Для нее было разработано несколько плат.

 

Шина PCI

 

В 1990 году компания Intel разработала новую шину с гораздо более высокой пропускной способностью, чем у шины EISA. Эту шину назвали PCI (Peripheral Component Interconnect— взаимодействие периферийных компонентов). Компания Intel запатентовала шину PCI и сделала все патенты всеобщим достоянием, так что любая компания могла производить периферические устройства для этой шины без каких-либо выплат за право пользования патентом.

Первая шина PCI передавала 32 бита за цикл и работала с частотой 33 МГц (время цикла 30 нc), общая пропускная способность составляла 133 Мбайт/с. В 1993 году появилась шина PCI 2.0, а в 1995 году - PCI 2.1. Шина PCI 2.2 подходит и для портативных компьютеров (где требуется экономия заряда батареи). Шина PCI работает с частотой 66 МГц, способна передавать 64 бита за цикл, а ее общая пропускная способность составляет 528 Мбайт/с. При такой производительности полноэкранное видеоизображение вполне достижимо (предполагается, что диск и другие устройства системы справляются со своей работой). Во всяком случае, шина PCI не будет ограничивать производительность системы.

Хотя 528 Мбайт/с — достаточно высокая скорость передачи данных, все же здесь есть некоторые проблемы. Во-первых, этого не достаточно для шины памяти. Во-вторых, эта шина не совместима со всеми старыми картами ISA. По этой причине компания Intel решила разрабатывать компьютеры с тремя и более шинами, как показано на рис. 3.47. Здесь мы видим, что центральный процессор может обмениваться информацией с основной памятью через специальную шину памяти и что шину ISA можно связать с шиной PCI. Такая архитектура используется фактически во всех компьютерах Pentium II, поскольку она удовлетворяет всем требованиям.

 

 

Рис. 3.47. Архитектура типичной системы Pentium И. Чем толще стрелка, обозначающая шину, тем выше пропускная способность этой шины

 

Ключевыми компонентами данной архитектуры являются мосты между шинами (эти микросхемы выпускает компания Intel — отсюда такой интерес к проекту). Мост PCI связывает центральный процессор, память и шину PCI. Мост ISA связывает шину PCI с шиной ISA, а также поддерживает один или два диска IDE.

Шины PCI являются синхронными, как и все шины PC, восходящие к первой модели IBM PC. Все транзакции в шине PCI осуществляются между задающим и подчиненным устройствами. Чтобы не увеличивать число выводов на плате, адресные и информационные линии объединяются. При этом достаточно 64 выводов для всей совокупности адресных и информационных сигналов, даже если PCI работает с 64-битными адресами и 64-битными данными.

Объединенные адресные и информационные выводы функционируют следующим образом. При операции считывания во время цикла 1 задающее устройство передает адрес на шину. Во время цикла 2 задающее устройство удаляет адрес и шина реверсируется таким образом, чтобы подчиненное устройство могло ее использовать. Во время цикла 3 подчиненное устройство выдает запрашиваемые данные. При операциях записи шине не нужно переключаться, поскольку задающее устройство помещает на нее и адрес, и данные. Тем не менее минимальная транзакция занимает три цикла. Если подчиненное устройство не может дать ответ в течение трех циклов, то вводится режим ожидания. Допускаются пересылки блоков неограниченного размера, а также некоторые другие типы циклов шины.

 

Арбитраж шины PCI

 

Чтобы передать по шине PCI какой-нибудь сигнал, устройство сначала должно получить к ней доступ. Шина PCI управляется централизованным арбитром, как показано на рис. 3.48. В большинстве случаев арбитр шины встраивается в один из мостов между шинами. От каждого устройства PCI к арбитру тянутся две специальные линии. Одна из них (REQ#) используется для запроса шины, а вторая (GNT#) — для получения разрешения на доступ к шине.

 

 

Рис. 3.48. В шине PCI используется централизованный арбитр

 

Алгоритм, которым руководствуется арбитр, не зависит от технических характеристик шины PCI. Допустим арбитраж по кругу, по приоритету и другие схемы арбитража.

Шина предоставляется для одной транзакции, хотя продолжительность этой транзакции теоретически произвольна. Если устройству нужно совершить вторую транзакцию и ни одно другое устройство не запрашивает шину, оно может занять шину снова, хотя обычно между транзакциями нужно вставлять пустой цикл. Однако при особых обстоятельствах (при отсутствии конкуренции на доступ к шине) устройство может совершать последовательные транзакции без пустых циклов между ними. Если задающее устройство осуществляет очень длительную передачу, а какое-нибудь другое устройство выдало запрос на доступ к шине, арбитр может сбросить линию GNT#. Предполагается, что задающее устройство следит за линией GNT#. Если линия сбрасывается, устройство должно освободить шину в следующем цикле.

 

Сигналы шины PCI

 

Шина PCI содержит ряд обязательных сигналов (табл. 3.5) и ряд факультативных сигналов (табл. 3.6). Оставшиеся выводы используются для питания, «земли» и разнообразных связанных сигналов. В столбцах «Задающее устройство» и «Подчиненное устройство» указывается, какое из устройств устанавливает сигнал при обычной транзакции. Если сигнал выдается другим устройством (например, CLK), оба столбца остаются пустыми.

 

Таблица 3.5. Обязательные сигналы шины PCI

 

 

Таблица 3.6. Факультативные сигналы шины PCI

 

 

Транзакции шины PCI

 

Шина PCI в действительности очень проста. Чтобы лучше понять это, рассмотрим временную диаграмму на рис. 3.49. Здесь мы видим транзакцию чтения, за ней следует пустой цикл и транзакция записи, которая осуществляется тем же задающим устройством.

Во время цикла T1 на заднем фронте синхронизирующего сигнала задающее устройство помещает адрес на линии AD и команду на линии С/ВЕ#. Затем задающее устройство устанавливает сигнал FRAME#, чтобы начать транзакцию.

Во время цикла Т2 задающее устройство переключает шину, чтобы подчиненное устройство могло воспользоваться ею во время цикла Т3. Задающее устройство также изменяет сигнал С/ВЕ#, чтобы указать, какие байты в слове ему нужно считать.

Во время цикла Т3 подчиненное устройство устанавливает сигнал DEVSEL#. Этот сигнал сообщает задающему устройству, что подчиненное устройство получило адрес и собирается ответить. Подчиненное устройство также помещает данные на линии AD и выдает сигнал TRDY#, который сообщает задающему устройству о данном действии. Если подчиненное устройство не может ответить быстро, оно не снимает сигнал DEVSEL#, который сообщает о его присутствии, но при этом не устанавливает сигнал TRDY# до тех пор, пока не сможет передать данные. При такой процедуре вводится один или несколько периодов ожидания.

 

 

Рис. 3.49. Примеры 32-битных транзакций в шине PCI. Во время первых трех циклов происходит операция чтения.

 

Шина USB

 

В середине 90-х годов представители семи компаний (Compaq, DEC, IBM, Intel, Microsoft, NEC и Nothern Telecom) собрались вместе, чтобы разработать шину, оптимально подходящую для подсоединения низкоскоростных устройств. Потом к ним примкнули сотни других компаний. Результатом их работы стала шина USB (Universal Serial Bus — универсальная последовательная шина), которая сейчас широко используется в персональных компьютерах.

Некоторые требования, изначально составляющие основу проекта:

1. Пользователи не должны устанавливать переключатели и перемычки на платах и устройствах.

2. Пользователи не должны открывать компьютер, чтобы установить новые устройства ввода-вывода.

3. Должен существовать только один тип кабеля, подходящий для подсоединения всех устройств.

4. Устройства ввода-вывода должны получать питание через кабель.

5. Необходима возможность подсоединения к одному компьютеру до 127 устройств.

6. Система должна поддерживать устройства реального времени (например, звук, телефон).

7. Должна быть возможность устанавливать устройства во время работы компьютера.

8. Должна отсутствовать необходимость перезагружать компьютер после установки нового устройства.

9. Производство новой шины и устройств ввода-вывода для нее не должно требовать больших затрат.

Шина USB удовлетворяет всем этим условиям. Она разработана для низкоскоростных устройств (клавиатур, мышей, фотоаппаратов, сканеров, цифровых телефонов и т. д.). Общая пропускная способность шины изначально составляла 1, 5 Мбайт/с (в настоящее время до 640 мбайт/с). Этого достаточно для большинства таких устройств. Предел был выбран для того, чтобы снизить стоимость шины.

Шина USB состоит из центрального хаба, который вставляется в разъем главной шины (см. рис. 3.47). Этот центральный хаб (часто называемый корневым концентратором) содержит разъемы для кабелей, которые могут подсоединяться к устройствам ввода-вывода или к дополнительным хабам, чтобы обеспечить большее количество разъемов. Таким образом, топология шины USB представляет собой дерево с корнем в центральном хабе, который находится внутри компьютера.

Кабель состоит из четырех проводов: два из них предназначены для передачи данных, один — для источника питания (+5 В) и один — для «земли». Система передает 0 изменением напряжения, а 1 — отсутствием изменения напряжения, поэтому длинная последовательность нулей порождает поток регулярных импульсов.

Когда подсоединяется новое устройство ввода-вывода, центральный хаб (концентратор) распознает это и прерывает работу операционной системы. Затем операционная система запрашивает новое устройство, что оно собой представляет и какая пропускная способность шины для него требуется. Если операционная система решает, что для этого устройства пропускной способности достаточно, она приписывает ему уникальный адрес (1-127) и загружает этот адрес и другую информацию в регистры конфигурации внутри устройства. Таким образом, новые устройства могут подсоединяться «на лету».

Шина USB представляет собой ряд каналов от центрального хаба к устройствам ввода-вывода. Каждое устройство может разбить свой канал максимум на 16 подканалов для различных типов данных (например, аудио и видео). В каждом канале или подканале данные перемещаются от центрального концентратора к устройству или обратно. Между двумя устройствами ввода-вывода обмена информацией не происходит. Ровно через каждую миллисекунду (±0,05 мс) центральный концентратор передает новый кадр, чтобы синхронизировать все устройства во времени.

Шина USB поддерживает 4 типа кадров: кадры управления, изохронные кадры, кадры передачи больших массивов данных и кадры прерывания. Кадры управления используются для конфигурации устройств, передачи команд устройствам и запросов об их состоянии. Изохронные кадры предназначены для устройств реального времени (микрофонов, акустических систем и телефонов), которые должны принимать и посылать данные через равные временные интервалы. Задержки хорошо прогнозируются, но в случае ошибки такие устройства не производят повторной передачи. Кадры следующего типа используются для передач большого объема от устройств и к устройствам без требований реального времени (например, принтеров). Наконец, кадры последнего типа нужны для того, чтобы осуществлять прерывания, поскольку шина USB не поддерживает прерывания.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 676; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.028 сек.