Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

ТЕМА 5. Надежность микроэлектронных, микропроцессорных и компьютерных систем

 

Надежность элементов электронных схем

Надежность резисторов. Статистические данные показывают, что обрыв токопроводящего слоя и нарушение контакта резистора – наиболее типичный вид отказа (свыше 50%). Значительный процент отказов (35-40%) относят за счет перегорания токопроводящего слоя. Около 5% отказов вызываются резким изменением величины сопротивления (в 10-100 раз и более). Количество отказов резисторов меняется с течением времени и зависит от условий применения, технологии производства, качества материалов.

Нагрев резистивного слоя за счет мощности, рассеиваемой на резисторе в рабочем режиме, и резкие изменения температуры окружающей среды вызывают необратимые накапливающиеся изменения в резисторе, приводящие к внезапному отказу. Снижение электрической нагрузки резистора, создание условий работы, исключающих резкие изменения температуры, повышают его надежность.

На надежность резисторов отрицательно влияет влага. Она ускоряет коррозию контактных выводов, что приводит к их обрыву, и способствует растрескиванию защитных эмалей. Проникающая через трещины влага разрушает резистивный слой или проволоку.

При длительных механических воздействиях происходят усталостные изменения в материалах, используемых в конструкции резисторов, что приводит к скачкообразному изменению свойств резисторов и их отказу. Надежность резисторов существенно зависит от качества проводящего слоя и его геометрических размеров. Чем меньше сечение проводящего слоя и чем больше его длина, тем ниже надежность.

Мгновенные отказы резисторов возможны из-за нарушения целостности контактного узла. Наиболее частые отказы этого вида наблюдаются у поверхностных резисторов из-за возникающих механических перенапряжений. У объемных резисторов таких отказов нет, так как у них контактный вывод работает на сжатие.

Большинство резисторов имеют в начальный период работы такую же надежность, как и в период нормальной работы. Характерной особенностью резисторов при их работе в схемах является то, что их отказы в более чем
50% случаев вызывают отказы других элементов, например, пробой конденсаторов, короткие замыкания в электропроводниках и полупроводниковых приборах.

Надежность конденсаторов. Наиболее частым видом отказов конденсаторов является пробой диэлектрика и перекрытие изоляции между обкладками
(поверхностный разряд). Эти отказы составляют около 80% всех отказов и возникают из-за наличия слабых мест в диэлектрике и технологических дефектов, допущенных при производстве. Довольно часто конденсаторы выходят из строя из-за обрывов выводов. Около 15% отказов конденсаторов вызваны уменьшением их емкости ниже допустимой. Чаще это наблюдается у электрических конденсаторов. Из-за уменьшения сопротивления изоляции выходят из строя около 5% конденсаторов.

Количество отказов конденсаторов зависит и от их назначения в схеме.
Наибольшая опасность отказов наблюдается у разделительных и блокированных конденсаторов, наименьшая – у контурных и накопительных.

На надежность конденсаторов существенное влияние оказывает температура, влажность и частота питающего напряжения. Конденсаторы с большой электрической и тепловой нагрузкой имеют повышенное число отказов.
Увеличение рабочего напряжения на конденсаторе всегда снижает сопротивление изоляции, нередко вызывает появление внутренней короны и пробой диэлектрика.

Нагрев конденсатора снижает электрическую прочность диэлектрика и сопротивление изоляции, увеличивает тангенс угла диэлектрических потерь.
Причем местное уменьшение сопротивления изоляции вызывает повышение температуры конденсатора и, как следствие, еще большее возрастание потерь и снижение сопротивления изоляции. Развитие этих процессов приводит к пробою конденсатора.

Влажность окружающей среды является причиной увеличения тангенса угла диэлектрических потерь, снижение электрической прочности и сопротивления изоляции, что ведет к снижению пробивного напряжения. Это особенно сильно заметно в негерметизированных конденсаторах. Надежное влагозащитное покрытие замедляет протекание нежелательных процессов под действием влаги.

В противоположность резисторам основное количество отказов у конденсаторов наблюдается в начальный период эксплуатации. Так, около 70% всех пробоев происходит до наступления нормального периода работы.

Надежность полупроводниковых элементов. Параметры полупроводниковых диодов и транзисторов сильно зависят от внешних воздействий и главным образом от влияния температуры. Высшая температура для полупроводникового прибора определяется переходом базы в область собственной проводимости. Для германия эта температура лежит в пределах 80-100(С, для кремния 150-200(С, для карбида кремния 300-400(С. Полупроводниковые приборы очень чувствительны к перегрузкам по току и по напряжению и выходят из строя даже при кратковременных перегрузках.

Основной причиной внезапных отказов полупроводниковых приборов является перенапряжение между коллектором и базой, возникающее во время переходных процессов. Иногда отказы могут быть обусловлены обратными импульсными выбросами на участке база-эмиттер. Частым видом внезапных отказов является также обрыв электрической цепи, короткие замыкания и недопустимые отклонения параметров элемента от номинала.

Постепенные отказы полупроводниковых приборов возникают большей частью из-за изменения их параметров, причем наиболее интенсивное изменение параметров отмечается в начальный период эксплуатации, составляющий несколько сотен часов. В дальнейшем скорость изменения параметров уменьшается и с наступлением периода старения снова растет. Изменения параметров полупроводниковых приборов большей частью наблюдаются при повышенных напряжениях на коллекторе или из-за проникновения влаги в прибор при нарушении герметичности. Такое нарушение вызывается обычно различием коэффициентов линейного расширения металлов и проходных изоляторов.

Надежность печатных плат. Основными параметрами, определяющими надежность печатных плат, являются тангенс угла диэлектрических потерь, диэлектрическая проницаемость, удельное объемное и поверхностное сопротивления, сопротивление изоляции между печатными проводниками. К факторам, наиболее влияющим на величину этих параметров относят температуру окружающей среды и влажность. Продолжительное нахождение печатных плат в условиях повышенной температуры и влажности, а особенно при одновременном их сочетании приводит к возникновению в платах необратимых явлений, вызывающих резкое уменьшение сопротивления изоляции, а это зачастую ведет к их отказу. Влага служит причиной образования плесени и коррозии металлов, которые могут вызвать разрыв электрической цепи.

Одной из причин, вызывающих отказы печатных плат является перекрытие по поверхности платы. Это явления возникает в результате увеличения относительной влажности воздуха вблизи поверхности платы по следующим причинам: из-за неоднородности поверхностного сопротивления печатных плат и их покрытий, образования поверхностных трещин на плате и на покрытии, уменьшении давления окружающей атмосферы. При уменьшении атмосферного давления напряжение поверхностного перекрытия твердых диэлектриков уменьшается и становится минимальным при давлении 800-950 Па, а затем снова возрастает. Повышенная температура окружающей среды снижает напряжение поверхностного перекрытия печатных плат. Старение материала изоляционного основания печатной платы приводит к значительному увеличению тангенса угла диэлектрических потерь, в результате чего происходит резкое возрастание уровня потерь и нередко отказ печатной платы.

Надежность печатных плат зависит также от количества соединений
(паек), нанесенных на нее. С увеличением количества соединений увеличивается вероятность отказа.

Надежность интегральных схем. Интенсивность отказов ИМС лежит в пределах 10-6-10-9 ч-1, приближаясь к уровню высоконадежных элементов.
Сравнение интенсивности отказов отдельных элементов ИМС и ИМС в целом показывает, что они практически равнозначны. Преимуществом является то, что степень функциональной сложности ИМС с малым и средним уровнем интеграции слабо отражается на их надежности.

Для ИМС прежде всего характерны внезапные отказы, обусловленные качеством изготовления (технологическими дефектами): разрывы соединений между контактной зоной на поверхности подложки (кристалла) и выводами корпуса, обрывы и короткие замыкания внутренних соединений. Процентное соотношение основных типов дефектов монолитных ИС указано на круговой диаграмме (рис.5). Внезапные отказы полупроводниковых ИМС составляют 80% от общего числа отказов. Свыше 50% отказов гибридных линейных ИМС связано с дефектами встроенных транзисторов и паяных соединений. Отказы контактов золотых проволочных выводов чаще всего происходят из-за обрыва проволочки около шарика ковары.

Наиболее слабым звеном полупроводниковых ИМС в пластмассовых корпусах являются внутренние проволочные соединения, дающие обрывы и короткие замыкания (более 90% отказов вызвано обрывами соединительных проводов).
Основная причина таких отказов определяется различием температурных коэффициентов линейного расширения металла и обволакивающего материала, что приводит к возникновению термомеханических напряжений. Около 10% отказов полупроводниковых ИМС в пластмассовых корпусах происходит по причине электрической коррозии алюминиевой металлизации из-за недостаточной влагостойкости пластмасс и загрязнения поверхности окисла при герметизации. Типичны для таких ИМС и отказы из-за образования шунтирующих утечек и коротких замыканий, так как влага вызывает перенос ионов металла и загрязнений, а также образование проводящих мостиков между разнопотенциальными точками схемы.

Более надежными являются ИМС с керамическими корпусами.

 

Надежность программного обеспечения

 

Дадим определение основных понятий надежности ПО:

  • В программном обеспечении имеется ошибка, если оно не выполняет того, что пользователю разумно от него ожидать.
  • Отказ программного обеспечения - это появление в нем ошибки.
  • Надежность программного обеспечения - есть вероятность его работы без отказов в течении определенного периода времени, рассчитанного с учетом стоимости для пользователя каждого отказа.

Из данных определений можно сделать важные выводы:

  • Надежность программного обеспечения является не только внутренним свойством программы.
  • Надежность программного обеспечения - это функция как самого ПО, так и ожиданий (действий) его пользователей.

Основными причинами ошибок программного обеспечения являются:

  • Большая сложность ПО, например, по сравнению с аппаратурой ЭВМ.
  • Неправильный перевод информации из одного представления в другое на макро- и микроуровнях. На макроуровне, уровне проекта, осуществляется передача и преобразование различных видов информации между организациями, подразделениями и конкретными исполнителями на всех этапах жизненного цикла ПО. На микроуровне, уровне исполнителя, производится преобразование информации по схеме: получить информацию - запомнить - выбрать из памяти (вспомнить) - воспроизвести информацию (передать).

Источниками ошибок (угрозами надежности) программного обеспечения являются [2]:

  • Внутренние: ошибки проектирования, ошибки алгоритмизации, ошибки программирования, недостаточное качество средств защиты, ошибки в документации.
  • Внешние: ошибки пользователей, сбои и отказы аппаратуры ЭВМ, искажение информации в каналах связи, изменения конфигурации системы.

Методы проектирования надежного программного обеспечения можно разбить на следующие группы [1]:

  • Предупреждение ошибок, методы позволяющие минимизировать или исключить появление ошибки.
  • Обнаружение ошибок, методы направленные на разработку дополнительных функций программного обеспечения, помогающих выявить ошибки.
  • Устойчивость к ошибкам, дополнительные функции программного обеспечения, предназначенные для исправления ошибок и их последствий и обеспечивающие функционирование системы при наличии ошибок.

Методы предупреждения ошибок концентрируются на отдельных этапах процесса проектирования программного обеспечения и включают в себя:

  • Методы, позволяющие справиться со сложностью системы.
  • Методы достижения большей точности при переводе информации.
  • Методы улучшения обмена информацией.
  • Методы немедленного обнаружения и устранения ошибок на каждом шаге (этапе) проектирования, не откладывая их на этап тестирования программы.

Сложность системы является одной из главных причин низкой надежности программного обеспечения. В общем случае, сложность объекта является функцией взаимодействия (количества связей) между его компонентами. В борьбе со сложностью ПО используются две концепции:

  • Иерархическая структура. Иерархия позволяет разбить систему по уровням понимания (абстракции, управления). Концепция уровней позволяет анализировать систему, скрывая несущественные для данного уровня детали реализации других уровней. Иерархия позволяет понимать, проектировать и описывать сложные системы.
  • Независимость. В соответствии с этой концепцией, для минимизации сложности, необходимо максимально усилить независимость элементов системы.

Это означает такую декомпозицию системы, чтобы её высокочастотная динамика была заключена в отдельных компонентах, а межкомпонентные взаимодействия (связи) описывали только низкочастотную динамику системы. Методы обнаружения ошибок базируются на введении в программное обеспечение системы различных видов избыточности:

  • Временная избыточность. Использование части производительности ЭВМ для контроля исполнения и восстановления работоспособности ПО после сбоя.
  • Информационная избыточность. Дублирование части данных информационной системы для обеспечения надёжности и контроля достоверности данных.
  • Программная избыточность включает в себя: взаимное недоверие - компоненты системы проектируются, исходя из предположения, что другие компоненты и исходные данные содержат ошибки, и должны пытаться их обнаружить; немедленное обнаружение и регистрацию ошибок; выполнение одинаковых функций разными модулями системы и сопоставление результатов обработки; контроль и восстановление данных с использованием других видов избыточности.

Методы обеспечения устойчивости к ошибкам направлены на минимизацию ущерба, вызванного появлением ошибок, и включают в себя:

  • обработку сбоев аппаратуры;
  • повторное выполнение операций;
  • динамическое изменение конфигурации;
  • сокращенное обслуживание в случае отказа отдельных функций системы;
  • копирование и восстановление данных;
  • изоляцию ошибок.

Важным этапом жизненного цикла программного обеспечения, определяющим качество и надёжность системы, является тестирование. Тестирование - процесс выполнения программ с намерением найти ошибки. Этапы тестирования:

  • Автономное тестирование, контроль отдельного программного модуля отдельно от других модулей системы.
  • Тестирование сопряжений, контроль сопряжений (связей) между частями системы (модулями, компонентами, подсистемами).
  • Тестирование функций, контроль выполнения системой автоматизируемых функций.
  • Комплексное тестирование, проверка соответствия системы требованиям пользователей.
  • Тестирование полноты и корректности документации, выполнение программы в строгом соответствии с инструкциями.
  • Тестирование конфигураций, проверка каждого конкретного варианта поставки (установки) системы.

Существуют две стратегии при проектировании тестов: тестирование по отношению к спецификациям (документации), не заботясь о тексте программы, и тестирование по отношению к тексту программы, не заботясь о спецификациях. Разумный компромисс лежит где-то посередине, смещаясь в ту или иную сторону в зависимости от функций, выполняемых конкретным модулем, комплексом или подсистемой.

Качество подготовки исходных данных для проведения тестирования серьёзно влияет на эффективность процесса в целом и включает в себя:

  • техническое задание;
  • описание системы;
  • руководство пользователя;
  • исходный текст;
  • правила построения (стандарты) программ и интерфейсов;
  • критерии качества тестирования;
  • эталонные значения исходных и результирующих данных;
  • выделенные ресурсы, определяемые доступными финансовыми средствами.

Однако, исчерпывающее тестирование всех веток алгоритма любой серьёзной программы для всех вариантов входных данных практически неосуществимо. Следовательно, продолжительность этапа тестирования является вопросом чисто экономическим. Учитывая, что реальные ресурсы любого проекта ограничены бюджетом и графиком, можно утверждать, что искусство тестирования заключается в отборе тестов с максимальной отдачей.

Ошибки в программах и данных могут проявиться на любой стадии тестирования, а также в период эксплуатации системы. Зарегистрированные и обработанные сведения должны использоваться для выявления отклонений от требований заказчика или технического задания. Для решения этой задачи используется система конфигурационного управления версиями программных компонент, база документирования тестов, результатов тестирования и выполненных корректировок программ. Средства накопления сообщений об отказах, ошибках, предложениях на изменения, выполненных корректировках и характеристиках версий являются основной для управления развитием и сопровождением комплекса ПО и состоят из журналов:

  • предлагаемых изменений;
  • найденных дефектов;
  • утвержденных корректировок;
  • реализованных изменений;
  • пользовательских версий.

Рассмотрим применение описанных выше методов повышения надёжности программного обеспечения при разработке автоматизированной информационной системы

Предупреждение ошибок - лучший путь повышения надёжности программного обеспечения. Для его реализации была разработана методика проектирования систем управления предприятиями, соответствующая спиральной модели жизненного цикла ПО. Методика предусматривает последовательное понижение сложности на всех этапах анализа объекта. При декомпозиции АИС были выделены уровни управления системы, затем подсистемы, комплексы задач и так далее, вплоть до отдельных автоматизируемых функций и процедур. Методика базируется на методах структурно-функционального анализа (SADT), диаграммах потоков данных (DFD), диаграммах "сущность-связь" (ERD), методах объектно-ориентированного анализа (OOA) и проектирования (OOD).

На основании методов обнаружения ошибок были разработаны следующие средства повышения надёжности ПО.

Средства использующие временную избыточность: авторизация доступа пользователей к системе, анализ доступных пользователю ресурсов, выделение ресурсов согласно ролям и уровням подготовки пользователей, разграничение прав доступа пользователей к отдельным задачам, функциям управления, записям и полям баз данных.

Средства обеспечения надёжности, использующие информационную избыточность: ссылочная целостность баз данных обеспечивается за счёт системы внутренних уникальных ключей для всех информационных записей системы, открытая система кодирования, позволяющая пользователю в любой момент изменять коды любых объектов классификации, обеспечивает стыковку системы классификации АИС с ПО других разработчиков, механизмы проверки значений контрольных сумм записей системы, обеспечивают выявление всех несанкционированных модификаций (ошибок, сбоев) информации, средства регистрации обеспечивают хранение информации о пользователе и времени последней модификации (ввода, редактирования, удаления) и утверждения каждой записи информационной системы, введение в структуры баз данных системы времени начала и окончания участия записи в расчётах позволяет ограничить объём обрабатываемой информации на любом заданном периоде, а также обеспечить механизмы блокировки информации для закрытых рабочих переводов, ведение служебных полей номеров версий баз данных и операционных признаков записей позволяет контролировать и предупреждать пользователей о конфликтах в случае несоответствия номеров версий модулей и структур баз, либо о нарушении технологических этапов обработки информации, средства автоматического резервного копирования и восстановления данных (в начале, конце сеанса работы или по запросу пользователей) обеспечивают создание на рабочей станции клиента актуальной копии сетевой базы данных, которая может быть использована в случае аварийного сбоя аппаратуры локальной и вычислительной сети и перехода на локальный режим работы и обратно.

Средства обеспечения надёжности, использующие программную избыточность: распределение реализации одноименных функций по разным модулям АИС с использованием разных алгоритмов и системы накладываемых ограничений и возможностью сравнения полученных результатов; специальные алгоритмы пересчётов обеспечивают в ручном и автоматическом режимах переформирование групп документов, цепочек порождаемых документов и бухгалтерских проводок, что повышает эффективность и надёжность обработки информации; средства обнаружения и регистрации ошибок в сетевом и локальных протоколах; в программные модули системы встроены средства протоколирования процессов сложных расчётов с выдачей подробной диагностики ошибок; средства отладки и трассировки алгоритмов пользовательских бизнес-функций.

Средства обеспечивающие устойчивость системы к ошибкам: процедура обработки сбоев обеспечивает в автоматическом режиме несколько попыток повторного выполнения операций прежде, чем выдать пользователю сообщение об ошибке (например, для операций раздельного доступа к ресурсам, операций блокировки информации или обращения к внешним устройствам); средства динамического изменения конфигурации осуществляют контроль доступа к сетевым ресурсам, а в случае их недоступности или конфликта обеспечивают автоматический запуск системы по альтернативным путям доступа; средства контроля и обслуживания данных обеспечивают восстановление заголовков баз данных, восстановление индексных файлов, конвертацию модифицированных структур баз данных; средства слияния, копирования, архивирования и восстановления данных.

Для обеспечения качества программного обеспечения АИС на этапе развития и сопровождения системы разработан комплекс программных средств обеспечивающий:

  • управление версиями ПО;
  • регистрацию поставок;
  • сопровождение заявок клиентов.

Использование рассмотренных в настоящей работе методов и средств обеспечения надёжности при проектировании и сопровождении автоматизированной информационной системы комбината хлебопродуктов обеспечило высокий уровень надёжности системы, необходимый для одновременной работы десятков пользователей производственной системы управления в реальном масштабе времени.

 

Классификация основных видов испытаний и порядок их проведения

Испытания как основная форма контроля изделий электронной техники (ИЭТ) представляют собой экспериментальное определение количественных и качественных показателей свойств изделия как результата воздействия на него при его функционировании, а также при моделировании объекта. Цели испытаний различны на различных этапах проектирования и изготовления ИЭТ. К основным целям испытаний можно отнести:

а) выбор оптимальных конструктивно-технологических решений при создании новых изделий;

б) доводку изделий до необходимого уровня качества;

в) объективную оценку качества изделий при их постановке на производство и в процессе производства;

г) гарантирование качества изделий при международном товарообмене.

Испытания служат эффективным средством повышения качества, так как позволяют выявить:

а) недостатки конструкции и технологии изготовления ИЭТ, приводящие к срыву выполнения заданных функций в условиях эксплуатации;

б) отклонения от выбранной конструкции или принятой технологии;

в) скрытые дефекты материалов или элементов конструкции, не поддающиеся обнаружению существующими методами технического контроля;

г) резервы повышения качества и надежности разрабатываемого конструктивно-технологического варианта изделия.

По результатам испытаний изделий в производстве разработчик устанавливает причины снижения качества.

При определении понятия “испытание”, надо отталкиваться не от английского термина “test” (у которого, как известно много значений), а от традиционных норм русского языка. Согласно этим нормам, испытание всегда предполагает какое-либо воздействие или нагрузку. Испытание проходят либо не проходят. Следовательно, результатом испытаний должны быть не результаты измерений, выполняемых при испытаниях, а ответ вида “годится” или ”не годится”, ”соответствует” или ”не соответствует”.

Ситуация с определением и практическим применением понятия “испытание” сложилась очень не просто, а английский термин “test” оказал отечественной метрологии плохую услугу. В англоязычных документах и технических книгах этим термином пользуются для описания существенно различных процедур, включая такие, как контроль, проверка, опробование, испытание и т.п. В отечественной метрологии в свое время неоднократно делались попытки разобраться с тремя фундаментальными понятиями: “измерение”, ”контроль”, ”испытание” /1/.

В руководстве ИСО/МЭК 2 дано следующее определение термина “испытание”: техническая операция, заключающаяся в определении одной или нескольких характеристик данной продукции в соответствии с установленной процедурой. Другое определение дано в ГОСТ 16504-81”Система государственных испытаний продукции. Испытания и контроль качества продукции. Основные термины и определения”. Испытания – это экспериментальное определение количественных и (или) качественных характеристик свойств объекта испытаний как результата воздействия на него при функционировании, моделировании объекта и (или) воздействии на него.

Испытания – это разновидность контроля. В систему испытаний входят следующие основные элементы:

а) объект испытаний – изделие, подвергаемое испытаниям. Главным признаком объекта испытаний является то, что по результатам испытаний принимается решение именно по этому объекту: о его годности или браковке, о возможности предъявления на последующие испытания, о возможности серийного выпуска и т.п. Характеристики свойств объекта при испытаниях можно определить путем измерений, анализов или диагностирования;

б) условия испытаний – это совокупность воздействующих факторов и (или) режимов функционирования объекта при испытаниях. Условия испытаний могут быть реальными или моделируемыми, предусматривать определение характеристик объекта при его функционировании и отсутствии функционирования, при наличии воздействий или после их приложения;

в) средства испытаний – это технические устройства, необходимые для проведения испытаний. Сюда входят средства измерений, испытательное оборудование и вспомогательные технические устройства;

г) исполнители испытаний – это персонал, участвующий в процессе испытаний. К нему предъявляются требования по квалификации, образованию, опыту работы и другим критериям;

д) нормативно-техническая документация (НТД) на испытания, которую составляют комплекс стандартов, регламентирующих организационно-методические и нормативно-технические основы испытаний; комплекс стандартов системы разработки и постановки продукции на производство; нормативно-технические и технические документы, регламентирующие требования к продукции и методам испытаний; Нормативно-технические документы, регламентирующие требования к средствам испытаний и порядок их использования /2/.

Условия проведения испытаний и перечень контролируемых параметров ИЭТ оговариваются в стандартах и общих технических условиях (ТУ) на изделие.

Все испытания классифицируют по методам проведения, назначению, этапам проектирования, изготовления и выпуска, виду готовой продукции, продолжительности, уровню проведения, виду воздействия, определяемым характеристикам объекта /3/.

На рисунке 1 приведена классификация основных видов испытаний.

По результату воздействия на ИЭТ испытания делят на разрушающие и неразрушающие, а также на стойкость, прочность и устойчивость. Испытания являются разрушающими, если в процессе их проведения применяют разрушающие методы контроля или в результате воздействия внешних факторов испытываемые образцы становятся непригодными для дальнейшего использования. Методы неразрушающего контроля применяют как взамен разрушающих, так и в дополнение к ним. При этом сокращается время анализа отказов, а в ряде случаев более точно устанавливаются место и вид дефекта.

Большинство методов испытаний изделий электронной техники являются либо разрушающими, либо значительно сокращающими технический ресурс изделий. Также в связи с уменьшением объема выпуска изделий возникают ситуации, когда объем выборок для разрушающего контроля становится сопоставим с объемом выпуска изделий. Поэтому наиболее широкое применение в практике испытаний получил выборочный метод, который позволяет судить о всей генеральной совокупности изделий по взятой из нее выборке. Если изделия, входящие в выборку, в полной мере отражают характер и структуру генеральной совокупности, то такая выборка называется представительной или репрезентативной.

 
 

 


 

Рисунок 1 - Классификация основных видов испытаний

 

Выборки классифицируют по ряду признаков:

а) по способу образования (повторные и бесповторные);

б) по преднамеренности отбора (преднамеренные и случайные);

в) по отношению ко времени образования (единовременные и случайные);

г) по целевому назначению (расслоенные и общепроизводительные).

По продолжительности все испытания подразделяют на:

а) нормальные испытания – испытания, методы и условия проведения которых обеспечивают получение в необходимом объеме информации о показателях надежности изделия за такое же время, что и при эксплуатации;

б) ускоренные испытания – испытания, методы и условия проведения которых обеспечивают получение необходимой информации о качестве изделия в более короткий срок;

в) сокращенные испытания – испытания, которые проводят по сокращенной программе.

По назначению испытания можно разделить на исследовательские и контрольные.

Исследовательские испытания проводят для изучения определенных характеристик свойств изделия. Результаты этих испытаний служат для решения следующих задач:

а) определения или оценки показателей качества функционирования испытываемых изделий в определенных условиях эксплуатации;

б) выбора оптимальных режимов работы и показателей надежности;

в) сравнения множества вариантов реализации изделия при проектировании и аттестации;

г) построения математической модели функционирования изделия (оценки параметров математической модели);

д) отбора существенных факторов, влияющих на показатели качества функционирования.

Исследовательские испытания при необходимости проводят на любых стадиях жизненного цикла продукции. Исследовательские испытания проводят для изучения поведения объекта при том или ином внешнем воздействующем факторе (ВВФ) или в том случае, если нет необходимого объема информации. Чаще всего это бывает, когда объект недостаточно изучен, например при исследовательских работах, проектировании, выборе оптимальных способов хранения.

Примером исследовательских испытаний могут служить испытания моделей. В целях опытного производства по эскизам изготавливают модель, которую затем испытывают. В процессе испытаний оценивают работоспособность, правильность конструкторского решения, определяют возможные характеристики, выясняют закономерности и тенденции изменения параметров.

Исследовательские испытания проводят в основном на типовом представителе с целью получения информации о совокупности всех объектов данного вида. Таким образом, эти испытания проводятся для изучения характеристик свойств объекта, формирования исходных требований к продукции и ее составных частей, выбора наиболее эффективных методов производства, эксплуатации (применения) и контроля продукции; определения условий эксплуатации.

Исследовательские испытания часто проводят как определительные и оценочные. Цель определительных испытаний – нахождение значений одной или нескольких величин с заданной точностью и достоверностью. Иногда при испытаниях надо лишь установить факт годности объекта, т.е. определить, удовлетворяет ли данное изделие установленным требованиям или нет. Такие испытания называют оценочными.

Испытания, проводимые для контроля качества объекта, называются контрольными. Назначение контрольных испытаний – проверка на соответствие техническим условиям при изготовлении. В результате испытаний полученные данные сопоставляют с установленными в технических условиях и делают заключение о соответствии испытываемого (контролируемого) объекта нормативно-технической документации. Контрольные испытания составляют наиболее многочисленную группу испытаний.

Цели и задачи испытаний меняются в течение жизненного цикла изделия. В связи с этим понятно выделение испытаний по этапам. На указанных этапах проводят доводочные, предварительные и приемочные испытания /3/.

Так, Доводочные испытания – исследовательские, ипроводят их при проектировании изделий с целью оценки влияния вносимых в техническую документацию изменений, чтобы обеспечить достижение заданных значений показателей качества. Необходимость испытаний определяет разработчик либо при составлении технического задания на разработку, либо в процессе разработки; он же составляет программу и методику испытаний.

Испытаниям подвергают опытные образцы продукции.

Предварительные испытания – контрольные для опытных образцов и (или) опытных партий продукции. Их проводят с целью определения возможности предъявления опытного образца на приемочные испытания. Испытания проводят в соответствии со стандартом или организационно-методическим документом министерства, ведомства, предприятия. При отсутствии последних необходимость испытаний определяет разработчик. Программа предварительных испытаний максимально приближены к условиям эксплуатации изделия. Организация проведения испытаний такая же, как у доводочных испытаниях.

Предварительные испытания проводят аттестованные испытательные подразделения с использованием аттестованного испытательного оборудования.

По результатам испытаний оформляют акт, отчет и определяют возможность предъявления изделия на приемочные испытания.

Приемочные испытания также являются контрольными для опытных образцов, опытных партий продукции или единичных изделий. Приемочные испытания опытного образца проводят с целью определения соответствия продукции техническому заданию, требованиям стандартов и технической документации, оценки технического уровня, определения возможности постановки продукции на производство.

Представленный на испытания опытный образец (опытная партия) должен быть доработан, а техническая документация откорректирована по результатам предварительных испытаний. Приемочные испытания организует предприятие-разработчик и проводит их по заранее разработанной программе при участии предприятия-изготовителя под руководством приемочной (государственной, межведомственной, ведомственной) комиссии. Приемочные испытания (проверки) могут проводиться специализированной испытательной организацией (государственные испытательные центры).

Члены комиссии по проведению приемочных испытаний, подписывая документы приемочных испытаний, как правило, согласовывают технические условия, карту технического уровня и качества продукции, составляют акт приемки опытного образца (опытной партии). При соответствии опытного образца (опытной партии) требованиям технического задания, стандартов и технической документации комиссия в акте приемки рекомендует данное изделие к постановке на производство. Если в результате приемочных испытаний комиссия выявила возможность улучшения отдельных свойств изделий, не установленных количественными значениями в техническом задании, в акте приемки дается перечень конкретных рекомендаций по совершенствованию продукции, указывается на необходимость их выполнения до передачи технической документации предприятию-изготовителю. Акт приемки утверждает руководство организации, назначившей комиссию по проведению приемочных испытаний.

Для продукции, на которую технический уровень оказался ниже требований технического задания, приемочная комиссия определяет дальнейшее направление работ по совершенствованию конструкции изделия, улучшению их производственно-технических характеристик, а также принимает о проведении повторных приемочных испытаний или о прекращении дальнейших работ.

Испытания готовой продукции подразделяют на квалификационные, приемосдаточные, периодические, типовые, инспекционные, сертификационные.

Квалификационные испытания проводят в следующих случаях: при оценке готовности предприятия к выпуску конкретной продукции, если изготовители опытных образцов и серийной продукции разные, а также при постановке на производство продукции по лицензиям и продукции, освоенной на другом предприятии. В остальных случаях необходимость проведения квалификационных испытаний устанавливает приемочная комиссия.

Испытаниям подвергают образцы из установочной (первой промышленной партии), а также первые образцы продукции, выпускаемой по лицензиям и освоенной на другом предприятии.

В состав этих испытаний включают все виды испытаний, предусмотренных в НТД, за исключением проверки сохраняемости.

Приемосдаточные испытания проводят для принятия решения о пригодности продукции к поставке или ее использованию. Испытаниям подвергают каждую изготовленную единицу или выборку из партии. Испытания проводит служба технического контроля изготовителя. При наличии на предприятии государственной приемки приемосдаточные испытания проводят ее представители. При испытаниях контролируют значения основных параметров и работоспособность изделия. При этом контроль, установленных в НТД показателей надежности изделий, может осуществляться косвенными методами.

Порядок испытаний установлен в государственном стандарте общих технических требований или технических условиях, а для продукции единичного производства – в техническом задании.

Периодические испытания проводят с целью:

а) периодического контроля качества изделий;

б) контроля стабильности технологического процесса в период между очередными испытаниями;

в) подтверждения возможности продолжения изготовления изделий по действующей документации;

г) подтверждения уровня качества изделия, выпущенного в течении контролируемого периода;

д) подтверждения эффективности методов испытаний, применяемых при приемочном контроле.

Периодические испытания предназначены для продукции установившегося серийного (массового) производства. При их проведении контролируют значения показателей, которые зависят от стабильности технологического процесса, но не проверяются при приемосдаточных испытаниях. Для испытаний представляют образцы продукции, отобранные в соответствии с государственными стандартами, техническими условиями и прошедшие приемосдаточные испытания.

Программа периодических испытаний максимально приближена к условиям эксплуатации.

Их периодичность – обычно каждый месяц или квартал, а также в начале выпуска изделий на заводе-изготовителе и при возобновлении производства после временного его прекращения. Периодические испытания включают в себя такие виды испытаний при которых вырабатывается часть ресурса (длительная вибрация многократные удары термоциклы), и сравнительно дорогостоящие испытания (такие, как испытания на работу при повышенной температуре и контроль электрических параметров), поэтому они всегда являются выборочными.

Типовые испытания – контроль продукции одного типоразмера, по единой методике, который проводят для оценки эффективности и целесообразности изменений, вносимых в конструкцию или технологический процесс. Испытаниям подвергают образцы выпускаемой продукции, в конструкцию или технологический процесс изготовления которых внесены изменения. Проводит эти испытания изготовитель с участием представителей государственной приемки или испытательная организация. Программу испытаний устанавливают в зависимости от характера вносимых изменений.

Эти испытания являются выборочными, так как относятся к разрушающим испытаниям, предназначены для оценки стойкости конструкции при различных видах механических и климатических воздействий.

Инспекционные испытания – это особый вид контрольных испытаний. Их осуществляют выборочно с целью контроля стабильности качества образцов готовой продукции и продукции, находящийся в эксплуатации. Их проводят специально уполномоченные организации (органы надзора, ведомственного контроля) в соответствии с НТД на эту продукцию по программе, установленной организацией, их выполняющей, или согласованной с ней.

Сертификационные испытания – элемент системы мероприятий, направленных на подтверждение соответствия фактических характеристик изделия требованиям НТД. Сертификационные испытания, как правило, проводят независимые от производителя испытательные центры. По результатам испытаний выдается сертификат или знак соответствия изделия требованиям НТД. Сертификация предполагает взаимное признание результатов испытаний поставщиком и потребителем.

Программу и методы испытаний устанавливают в сертификационной документации и указывают в положении по сертификации данного изделия с учетом особенностей его изготовления.

Сертификационные испытания в большинстве случаев проводятся для оценки соответствия функциональных показателей условиям эксплуатации, способности к воздействию внешних факторов и критериям надежности. Внешние воздействующие факторы во многом определяют требования к безопасности продукции и поэтому обычно оцениваются в рамках обязательной сертификации. Надежность, как основное потребительское свойство изделия играет существенную роль в конкурентоспособности на рынке.

Помимо испытаний, проводимых изготовителем, ИЭТ могут подвергаться проверке при входном контроле у потребителя. При входном контроле не должны проводиться термоудары, термоциклы, длительная вибрация, механические удары, многократные проверки изделий испытательным напряжением. Недопустимы проверки изделий в режимах, отличающихся от указанных в ТУ. Используемая при входном контроле измерительная, испытательная аппаратура и стенды должны соответствовать требованиям на аналогичную аппаратуру и стенды поставщика.

В зависимости от характера воздействия на изделия все ВВФ делятся на классы: механические, климатические и другие природные, биологические, радиационные, электромагнитных полей.

<== предыдущая лекция | следующая лекция ==>
Тема 4. Расчет надежности дискретных невосстанавливаемых систем с дробной кратностью резервирования | Испытание программных продуктов (анализ)
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1585; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.112 сек.