Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Обмен веществ

 

Обмен веществ (метаболизм) — это совокупность реакций ассимиляции и диссимиляции, лежащих в основе жизнедеятельности и обуславливающих связь организма с окружающей средой.

Постоянный обмен веществ с окружающей средой - основное свойство живых систем. В клетках непрерывно идут процессы биосинтеза, т.е. при участии ферментов из простых органических соединений образуются сложные:

из аминокислот - белки,

из моносахаридов - углеводы,

из нуклеотидов - НК.

Все процессы синтеза идут с поглощением энергии (см. приложение № 24). Примерно с такой же скоростью идет и расщепление сложных молекул до более простых с выделением энергии - диссимиляция (энергетический обмен). Благодаря этим процессам сохраняется относительное постоянство состава клеток. При расщеплении высокомолекулярных соединений до более простых выделяется энергия, необходимая для реакции биосинтеза.

Для реакции обмена характерна высокая организованность и упорядоченность. Каждая реакция протекает с участием специфических белков - ферментов. Они располагаются в основном намембранах органов и в гиалоплазме клеток в строго определённом порядке.

Одним из высших уровней регуляции метаболизма является система

гормональной регуляции, осуществляемая эндокринными органами. В зависимости от общей направленности процессов выделяют две составные части метаболизма.

1. Катаболизм (или энергетический обмен, или диссимиляция) - совокупность реакций, приводящих к образованию простых соединений из более сложных (реакции гидролиза полимеров до мономеров и расщепление последних до низкомолекулярных соединений углекислого газа, воды, аммиака).

2. Анаболизм (или пластический обмен, или ассимиляция) - совокупность реакций синтеза сложных веществ из более простых (биосинтез белка, образование углеводов из углекислого газа и воды в процессе фотосинтеза).

Для их протекания требуются затраты энергии. Процессы пластического и энергетического обмена неразрывно связаны между собой. Все синтетические (анаболические) процессы нуждаются в энергии, поставляемой в ходе реакций диссимиляции. Сами же реакции расщепления (катаболизма) протекают лишь при участии ферментов, синтезируемых в процессе ассимиляции.

 

1. Энергетический обмен.

 

Энергетический обмен - совокупность реакций ферментативного расщепления сложных органических соединений, сопровождающихся выделением энергии.

Часть энергии рассеивается в виде тепла, а часть аккулизируется в высокоэнергетических сферах АТФ и используется затем для обеспечения всех разнообразных процессов жизнедеятельности клетки:

- биосинтетические реакции,

- проведение импульсов,

- сокращение мышц.

Выделяют три этапа энергетического обмена:

1. Подготовительный,

2. Неполное окисление (бескислородный или анаэробный),

3. Полное окисление (дыхание, кислородный или аэробный)

Подготовительный протекает в пищеварительном тракте животных и человека или в цитоплазме клеток всех живых существ. На данном этапе крупные органические молекулы под действием ферментов расщепляются на мономеры: белки до аминокислот. Выделяется небольшое количество энергии, рассеивающееся в виде тепла.

Бескислородный протекает в цитоплазме клеток. Мономерыпервого этапа подвергаются дальнейшему распаду без кислорода. Например, 1 молекула глюкозы расщепляется на две молекулы пировиноградной кислоты, которая восстанавливается до молочной кислоты, и выделяется около 200 кДж энергии.

С6Н12О6 + 2АДФ + 2Н3РО4

3Н4О3 + 2АТФ + 2Н2О

Конечные продукты данного этапа содержат в себе ещё большое количество энергии.

Кислородный этап характерен для аэробных органов. Он заключается в

дальнейшем окислении молочной (или ПВК) кислоты до конечных продуктов - СО и НО. Этот процесс протекает в митохондриях с участием ферментов и кислорода. Этот процесс сопровождается выделением энергии, достаточной для синтеза 36 молекул АТФ (1440 кДж).

3Н6О3 + 6О2 + 36 Н3РО4 + 36АДФ 36АТФ + 6СО2+ 42Н2О

Вывод: В ходе второго и третьего этапов энергетического обмена при расщеплении одной молекулы глюкозы образуется 38 молекул АТФ. На это расходуется 1520 кДж, а всего выделяется 2800 кДж энергии. Следовательно, 55% энергии, высвобождаемой при расщеплении глюкозы, аккумулируется клеткой в молекулах АТФ, а 45% рассеивается в виде тепла.

 

2. Пластический обмен.

 

Пластический обмен ( ассимиляция ) — совокупность реакций биологического синтеза, при котором из поступивших в клетку веществ образуются вещества, специфические для данной клетки.

К пластическому обмену относится биосинтез белков, фотосинтез, хемосинтез и др.

Различают 2 типа ассимиляции: автотрофную и гетеротрофную.

Автотрофная ассимиляция характерна для клеток зеленых растений, некоторых бактерий. Здесь органические вещества синтезируются из неорганических. Источником энергии служит свет или химическая энергия.

Гетеротрофная ассимиляция имеет место в клетках животных организмов, грибов и большинства бактерий, которые для синтеза собственных веществ используют готовые органические соединения.

Миксотрофные организмы способны использовать для построения своих структур как органические, так и неорганические соединения (жгутиковые, имеющие хлорофилл).

3. Хемосинтез.

 

Хемосинтез (от хемо... и синтез), процесс образования некоторыми бактериями органических веществ из неорганических веществ диоксида углерода за счет энергии, полученной при окислении неорганических соединений (аммиака, водорода, соединений серы, закисного железа и др.).

Хемосинтезирующие бактерии, наряду с фотосинтезирующими растениями и микробами, составляют группу автотрофных организмов. Хемосинтез открыт в 1887 С. Н. Виноградским.

3O2 NHO2 + энергия;

NHO2O2— NНО3 + энергия.

Высвобождающаяся в ходе реакций окисления энергия запасается бактериями в виде молекул АТФ и используется для синтеза органических соединений, который протекает сходно с реакциями темновой фазы фотосинтеза.

Хемосинтезирующие бактерии играют очень важную роль в биосфере. Они участвуют в очистке сточных вод, способствуют накоплениям в почве минеральных веществ, повышают плодородие почвы.

 

4. Фотосинтез.

 

Фотосинтез (от фото... и синтез), уникальный физико-химический процесс, осуществляемый на Земле всеми зелеными растениями и некоторыми бактериями и обеспечивающий преобразование электромагнитной энергии солнечных лучей в энергию химических связей различных органических соединений. Основа фотосинтеза — последовательная цепь окислительно-восстановительных реакций, в ходе которых осуществляется перенос электронов от донора — восстановителя (вода, водород и др.) к акцептору — окислителю (СО2, ацетат) с образованием восстановленных соединений (углеводов) и выделением O2, если окисляется вода.

 

Фотосинтез играет ведущую роль в биосферных процессах, приводя в глобальных масштабах к образованию органического вещества из неорганического. Фотосинтезирующие организмы, используя солнечную энергию в реакциях фотосинтеза, осуществляют связь жизни на Земле со Вселенной и определяют в конечном итоге всю ее сложность и разнообразие. Гетеротрофные организмы — животные, грибы, большинство бактерий, а также бесхлорофилльные растения и водоросли — обязаны своим существованием автотрофным организмам — растениям-фотосинтетикам, создающим на Земле органическое вещество и восполняющим убыль кислорода в атмосфере.

 

а) Фотосинтезирующие организмы.

Самый примитивный тип фотосинтеза осуществляют галобактерии, живущие в средах с высоким (до30%) содержанием хлорида натрия. Простейшими организмами, способными осуществлять фотосинтез, являются также пурпурные и зеленые серобактерии, а также несерные пурпурные бактерии. Фотосинтетический аппарат этих организмов устроен гораздо проще (только одна фотосистема), чем у растений; кроме того, они не выделяют кислород, так как в качестве источника электронов используют соединения серы, а не воду. Фотосинтез такого типа получил название бактериального. Однако цианобактерии (прокариоты, способные к фоторазложению воды и выделению кислорода) обладают более сложной организацией фотосинтетического аппарата — двумя сопряженно работающими фотосистемами. У растений реакции фотосинтеза осуществляются в специализированной органелле клетки – хлоропласте. У всех растений (начиная от водорослей и мхов и кончая современными голосеменными и покрытосеменными) прослеживается общность в структурно-функциональной организации фотосинтетического аппарата (см. приложение № 41).

 

б) Фотосинтетические пигменты.

Основными пигментами, осуществляющими поглощение квантов света в процессе фотосинтеза, являются хлорофиллы, пигменты Mg-порфириновой природы. Обнаружено несколько форм хлорофиллов, различающихся по химическому строению. Спектр поглощения различных форм хлорофиллов охватывает видимую, ближнюю ультрафиолетовую и ближнюю инфракрасную области спектра (у высших растений от 350 до 700 нм, а у бактерий — от 350 до 900 нм). Хлорофилл а является основным пигментом и характерен для всех организмов, осуществляющих оксигенный, т. е. с выделением кислорода, фотосинтез. У зеленых и эвгленовых водорослей, мхов и сосудистых растений, кроме хлорофилла a, имеется хлорофилл b, содержание которого составляет 1/4-1/5 от содержания хлорофилла a. Это дополнительный пигмент, расширяющий спектр поглощения света. У некоторых групп водорослей, в основном бурых и диатомовых, дополнительным пигментом служит хлорофилл с, а у красных водорослей — хлорофилл d. У пурпурных бактерий содержится бактериохлорофилл a и b, а у зеленых серных бактерий наряду с бактериохлорофиллом a содержатся бактериохлорофиллы c и d. В поглощении световой энергии участвуют и другие сопровождающие пигменты — каротиноиды (пигменты полиизопреноидной природы) у фотосинтезирующих эукариот и фикобилины (пигменты с открытой тетрапиррольной структурой) у цианобактерий и красных водорослей. У галобактерий в плазматических мембранах обнаружен единственный пигмент — сложный белок бактериородопсин, близкий по химическому строению родопсину — зрительному пигменту сетчатки глаза.

В клетке молекулы хлорофилла находятся в различных агрегированных (связанных) состояниях и образуют пигмент-липопротеидные комплексы, и вместе с другими пигментами, участвующими в процессах поглощения квантов света и передачи энергии, связаны с белками фотосинтетических (тилакоидных) мембран, образуя так называемые светособирающие хлорофилл-белковые комплексы. По мере увеличения степени агрегации и плотности упаковки молекул максимум поглощения пигментов сдвигается в длинноволновую область спектра. Основная роль в поглощении световой энергии принадлежит коротковолновым формам, которые затем передают ее на более длинноволновые формы, участвующие в процессах миграции энергии. Присутствие в клетке серии спектрально близких форм пигментов обеспечивает высокую степень эффективности миграции энергии в реакционные фотохимические центры, где находятся наиболее длинноволновые формы пигментов, играющие роль так называемых энергетических ловушек.

 

в) Две стадии фотосинтеза.

Процесс фотосинтеза состоит из двух последовательных и взаимосвязанных этапов: светового (фотохимического) и темнового (метаболического). На первой стадии происходит преобразование поглощенной фотосинтетическими пигментами энергии квантов света в энергию химических связей высокоэнергетического соединения АТФ и универсального восстановителя НАДФН — собственно первичных продуктов фотосинтеза, или так называемой «ассимиляционной силы». В темновых реакциях фотосинтеза происходит использование образовавшихся на свету АТФ и НАДФН в цикле фиксации углекислоты и ее последующего восстановления до углеводов.

У всех фотосинтезирующих организмов фотохимические процессы световой стадии фотосинтеза происходят в особых энергопреобразующих мембранах, называемых тилакоидными, и организованы в так называемую электрон-транспортную цепь. Темновые реакции фотосинтеза осуществляются вне тилакоидных мембран (в цитоплазме у прокариот и в строме хлоропласта у растений). Таким образом, световая и темновая стадии фотосинтеза разделены в пространстве и во времени.

 

г)Фотохимические реакции фотосинтеза.

Фотохимический этап фотосинтеза включает ряд последовательно протекающих процессов, локализованных в тилакоидных мембранах. Пигменты, специфически связанные с белками фотосинтетических мембран, и другие компоненты, необходимые для протекания реакций поглощения света и электронного транспорта, образуют надмолекулярные комплексы — фотосистему I (ФС I) и фотосистему II (ФС II). В составе каждой фотосистемы различают: реакционный центр, в котором происходят очень быстрые реакции первичного разделения зарядов; комплекс компонентов, по которым передается электрон от реакционного центра, и последний окисляется (электронтранспортная цепь); комплекс компонентов, за счет работы которых происходит фотоокисление воды и восстановление реакционного центра.

Первый этап сложного преобразования электромагнитного излучения (света) в свободную энергию химических связей включает поглощение фотонов светособирающими комплексами (антеннами), связанными с ФС I и ФС II (ССКI и ССКII, соответственно). Затем энергия возбуждения мигрирует по пигментам антенны (от более коротковолновых форм хлорофилла к более длинноволновым) и захватывается ловушкой — специализированным реакционным центром, который расположен в центре комплекса. Реакционные центры образованы самыми длинноволновыми формами хлорофилла а [с максимумом поглощения 700 нм (Р700) в ФС I и 680 нм (Р680) в ФС II]. Возбужденные Р700* и Р680* — очень сильные восстановители и быстро передают электрон на близко расположенную молекулу акцептора, а сами при этом окисляются. Эти реакции первичного разделения зарядов, происходящие в реакционных центрах ФС I и ФС II, являются единственными, в которых действительно происходит превращение энергии кванта света в химическую энергию. Дальнейший транспорт электронов, препятствующий рекомбинации зарядов, осуществляется по градиенту электрохимического потенциала компонентов электрон-транспортной цепи фотосинтеза.

 

д) Электронтранспортная цепь фотосинтеза и
ее структурно-функциональная организация.

Фотосинтетическую цепь переноса электронов, локализованную в тилакоидных мембранах, принято представлять в виде предложенной в 1961 так называемой «Z-схемы», в которой переносчики расположены по градиенту электрохимического потенциала.

Свойства тилакоидной мембраны (высокое электрическое сопротивление, низкая проницаемость для ионов, анизотропная структура) обеспечивают, одновременно с переносом электронов по градиенту электрохимического потенциала, направленный трансмембранный перенос протонов (Н+) из стромы хлоропласта во внутритилакоидное пространство.

Местом локализации процесса фотосинтеза у эукариот являются специализированные органоиды клетки — хлоропласты, точнее их особые мембранные структуры — тилакоиды. Тилакоиды представляют собой уплощенные дисковидные полые мешки, в ограничивающих мембранах которых и осуществляется фотосинтез. Благодаря наличию многослойной системы тилакоидных мембран, отделяющих матрикс (строму) хлоропласта от внутреннего пространства тилакоида, пространство внутри хлоропластов строго структурировано. Тилакоиды могут либо находиться в тесном контакте друг с другом, образуя стопки (гранальные тилакоиды), либо обособленно располагаться в строме (стромальные тилакоиды). В липидном матриксе гранальных тилакоидных мембран локализована ФС II, стромальных — ФС I;. Белковый b/f-цитохромный комплекс локализован в тилакоидах обоих типов, а АТФ-синтазный комплекс — в стромальных тилакоидах и в соприкасающейся со стромой области гранальных тилакоидов.

 

е) Типы фотосинтетического транспорта электронов

ФС II осуществляет реакции фотоокисления воды, приводящие к образованию молекулярного кислорода и протона Н+. Светозависимый транспорт электронов от молекул воды через ФС II, b/f-цитохромный комплекс и ФС I к НАДФ+носит название нециклического. Это основной (магистральный) путь переноса электронов в фотосинтетической цепи. Впервые выделение кислорода на свету в системе изолированных хлоропластов шпината с использованием искусственного акцептора электронов (феррицианида калия) наблюдал в 1939 английский исследователь Р. Хилл. Впоследствии нециклический перенос электронов (с участием физиологических или искусственных соединений), включающий работу обеих фотосистем или только одной из них получил название реакции Хилла.

Наряду с ним возможны так называемые альтернативные (дополнительные) пути: циклический и псевдоциклический. Циклический транспорт электронов осуществляется вокруг ФС I — in vivo он обычно включает пул пластохинонов, b/f-цитохромный комплекс и пластоцианин; in vitro (при использовании искусственных кофакторов) может осуществляться по более короткому пути. Циклический транспорт электронов (но со значительно меньшей скоростью) может осуществляться и вокруг ФС II.

Транспорт электронов называется псевдоциклическим, если вместо НАДФ+акцептором электронов — от воды через ФС II, цитохром b/f-комплекс и компоненты восстановительной стороны ФС I — является молекулярный кислород. Кислород при этом либо не выделяется, либо наблюдается его видимое поглощение. Менее активен этот процесс в ФС II. При этом типе транспорта образуются высокореакционные восстановленный кислород — супероксид-анион-радикал O2-и пероксид водорода H2O2, которые обезвреживаются в хлоропласте с помощью фермента супероксиддисмутазы. Способность изолированных хлоропластов осуществлять фотовосстановление молекулярного кислорода впервые была показана немецким ученым А. Мелером в 1951. Впоследствии перенос электронов на молекулярный кислород (псевдоциклический транспорт электронов) получил название реакции Мелера.

 

ж) Синтез АТФ и образование НАДФН

Одновременно с фотосинтетическим транспортом электронов происходит перенос протонов из стромы хлоропласта во внутритилакоидное пространство — возникает трансмембранный электрохимический градиент ионов водорода (pH-градиент), используемый затем комплексом фермента АТФ-синтазы для синтеза АТФ из АДФ и неорганического фосфата в процессе фотосинтетического фосфорилирования. При нециклическом токе электронов и сопряженном с ним фотофосфорилировании происходит образование восстановителя НАДФН и АТФ. При альтернативных путях переноса электронов — циклическом и псевдоциклическом — образуется только АТФ.

Образующиеся в результате световых реакций первичные продукты фотосинтеза — НАДФН и АТФ — используются в ходе дальнейших ферментативных реакций для восстановления углекислоты до углеводов, жиров, белков. При неуглеводной направленности темнового метаболизма, когда преимущественно образуются аминокислоты, белки, органические кислоты, возрастает уровень потребления восстановителя НАДФН.

 

з) Темновые реакции фотосинтеза
(фотосинтетическая фиксация CO2)

Метаболические варианты фотосинтетической фиксации CO2у растений принято классифицировать на С3-, С4- и САМ-фотосинтез. Образующиеся в темновых реакциях углеводы могут откладываться в виде крахмала в хлоропластах; выходить из хлоропластов и использоваться в образовании нового структурного материала клеток; служить источником энергии для различных метаболических процессов; транспортироваться в запасающие органы растения.

 

и) С3-путь фотосинтеза

Восстановительный пентозофосфатный цикл фиксации CO2(С3-путь, или цикл Кальвина), открытый американскими учеными Э. Бенсоном и М. Калвином в 1950-е годы, универсален и обнаруживается практически у всех автотрофных организмов. В этом цикле фиксация СО2осуществляется на пятиуглеродное соединение рибулезобисфосфат (РуБФ) при участии фермента рибулезобисфосфаткарбоксилазы (РуБФ-карбоксилазы). Первым стабильным продуктом являются две молекулы трехуглеродного соединения 3-фосфоглицериновой кислоты (3-ФГК), восстанавливаемая затем с использованием АТФ и НАДФН до трехуглеводных сахаров, из которых образуется конечный продукт фотосинтеза — шестиуглеродная глюкоза. Субстратом ключевого фермента фотосинтетической фиксации СО2— РуБФ-карбоксилазы — наряду с СО2может быть и О2. При взаимодействии РуБФ с кислородом реализуется гликолатный, или С2-путь, известный как фотодыхание.

Большинство наземных растений осуществляют фотосинтез по С3-пути. Типичные представители этой группы — горох, фасоль, конские бобы, шпинат, салат, капуста, пшеница, овес, рожь, ячмень, свекла, подсолнечник, тыква, томаты и другие одно- и двудольные растения.

 

к) С4-путь фотосинтеза

У некоторых видов растений (в основном тропических и очень небольшого числа видов из умеренных широт) первыми стабильными соединениями при фиксации СО2являются четырехуглеродные органические кислоты — яблочная и аспарагиновая. Такие растения отличаются видимым отсутствием фотодыхания (или очень низким уровнем), высокой скоростью фиксации СО2в расчете на единицу поверхности листа, более высокой общей фотосинтетической продуктивностью, быстрой скоростью роста. Функционально и анатомически в ткани их листьев выделяют 2 типа фотосинтезирующих клеток — клетки паренхимной обкладки, окружающие проводящие пучки, и клетки мезофилла.

Для всех растений этой группы характерна катализируемая ферментом фосфоенолпируваткарбоксилазой (ФЕП-карбоксилазой) фиксация СО2на трехуглеродное соединение фосфоенолпируват (ФЕП) с образованием щавелевоуксусной кислоты, которая далее превращается в яблочную (малат) или аспарагиновую кислоту. Эти реакции протекают в цитоплазме клеток мезофилла листа. С4-кислоты затем поступают в клетки обкладки проводящих пучков, где подвергаются декарбоксилированию, а высвободившаяся СО2фиксируется через цикл Кальвина. Следовательно, у С4-растений фотосинтетический метаболизм углерода пространственно разделен и осуществляется в клетках различного типа, т. е. по «кооперативному механизму», подробно описанному австралийскими исследователями М. Хетчем и К Слэком и советским биохимиком Ю. С. Карпиловым в конце 1960-70 годах.

В соответствии с первичным механизмом декарбоксилирования С4-кислот все С4-растения подразделяются на три группы. НАДФ-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью фермента НАДФ-малатдегидрогеназы в хлоропластах клеток обкладки проводящих пучков. Типичные представители этой группы — кукуруза, сахарный тростник, сорго, росичка кроваво-красная и другие злаки. НАД-малатдегидрогеназные растения осуществляют декарбоксилирование малата с помощью митохондриальной НАД-малатдегидрогеназы. Первичным продуктом фиксации углекислоты у них является аспартат. К типичным представителям этой группы принадлежат различные виды амаранта, портулак огородный, просо обыкновенное, бизонья трава, растущая в прериях Северной Америки и др. Фосфоенолпируват-карбоксикиназные растения осуществляют декарбоксилирование аспартата в цитоплазме клеток обкладки проводящих пучков с образованием ФЕП. Типичные представители — некоторые виды проса, хлориса, бутелуа и др.

У суккулентных растений, произрастающих в условиях водного дефицита, фиксация СО2 осуществляется с помощью так называемого САМ-пути (метаболизм кислот по типу растений семейства толстянковых). Первичный продукт фиксации углекислоты (яблочная кислота) образуется у них в темновой период и накапливается в вакуолях клеток листа. В дневное время при закрытых устьицах (которые закрываются для сохранения воды в тканях листа) осуществляется декарбоксилирование этой кислоты, а освобождающаяся СО2 поступает в цикл Кальвина.

Возникновение С4- и САМ-путей фотоассимиляции СО2связано с давлением на высшие наземные растения засушливого климата. С4-растения хорошо адаптированы к высокой интенсивности света, повышенным температурам и засухе. Оптимальная температура для осуществления фотосинтеза у них выше, чем у С3-растений. С4-растения наиболее многочисленны в зонах с высокими температурами. Они более экономно используют воду по сравнению с С3-растениями. В настоящее время известно, что все растения с С4-фотосинтезом — цветковые (из 19 семейств:16 — двудольных и 3 —однодольных). Не обнаружено ни одного семейства, которое бы состояло только из С4-растений.

 

л) Генетика фотосинтеза.

Хлоропласты обладают собственной системой синтеза РНК и белка. Они содержат двухцепочечную ДНК кольцеобразной формы, не связанную с гистонами, что роднит их с ДНК прокариот. ДНК хлоропластов кодирует рибосомную, транспортную и информационную РНК. Хлоропласты высокополиплоидны, т. е. каждый хлоропласт содержит много копий кольцевого генома, причем количество ДНК увеличивается по мере развития органеллы. Хлоропласты содержат рибосомы 70S и 20-30% общей РНК клетки. В процессе развития хлоропластов осуществляется считывание (транскрипция) как их собственного, так и ядерного геномов, что свидетельствует об их относительной автономности. Пластидная ДНК кодирует РНК рибосом, большую субъединицу РуБФ-карбоксилазы и специфические белки тилакоидов. Однако значительная часть хлоропластных белков кодируется ядерной ДНК, например, РНК-полимераза, малая субъединица РуБФ-карбоксилазы и др.

 

м) Экология фотосинтеза.

Интенсивность фотосинтеза зависит в первую очередь от интенсивности и спектрального состава света, концентрации СО2и О2, температуры, водного режима растения, минерального питания и др. факторов внешней среды. Адаптация фотосинтеза к этим факторам лежит в основе жизнедеятельности растения. В условиях, когда внешние факторы не лимитируют скорость фотосинтеза, его интенсивность достигает максимальной величины и целиком определяется ростовой функцией.

В среднем листья поглощают 80-85% энергии фотосинтетически активной радиации (400-700 нм) и 25% энергии инфракрасных лучей, что составляет около 55% общей солнечной радиации. Однако для фотосинтеза используется только 1,5-2% поглощенной энергии.

Зависимость скорости фотосинтеза от интенсивности падающего света имеет форму логарифмической кривой. У светолюбивых С3-растений максимальная скорость фотосинтеза наблюдается при освещении меньше яркого солнечного света. При дальнейшем увеличении интенсивности падающего света кривая скорости фотосинтеза постепенно выходит на плато (насыщение) и затем снижается (так называемое послеполуденное торможение). У С4-растений высокая скорость фотосинтеза наблюдается только при высоком уровне освещенности. У них отсутствует послеполуденное торможение фотосинтеза, а световая кривая не имеет насыщения на ярком солнечном свету.

При изменении условий освещения интенсивность фотосинтеза меняется, а фотосинтетический аппарат «настраивается» на новые условия на разных уровнях своей организации. Это важное адаптивное свойство позволяет растениям полнее использовать свет низких и умеренных интенсивностей и предохранять мембраны хлоропластов от повреждений при очень ярком свете, особенно если он сочетается с неблагоприятными факторами среды (низкой температурой, засухой и др.).

Качественный состав падающего света также влияет на скорость фотосинтеза и качественный состав его продуктов. Так, при выращивании растений на синем свету преимущественно образуются соединения неуглеводной природы — аминокислоты, белки и органические кислоты.

Зависимость фотосинтеза от температуры описывается одновершинной кривой. У растений умеренного пояса интенсивность фотосинтеза достигает максимума в интервале температур 20-25°С и снижается при дальнейшем повышении температуры. При температуре 40°С фотосинтез практически полностью тормозится, а при 45°С такие растения погибают. Однако растения, произрастающие в пустыне, способны осуществлять фотосинтез даже при температуре 58°С. У растений северных широт нижняя температурная граница фотосинтеза находится в пределах от -15°С (сосна, ель) до -0,5°С, а у тропических растений — в области низких положительных температур (4-8°С).

 

<== предыдущая лекция | следующая лекция ==>
Лекция 9 Тема: Загрязнение водных ресурсов и его последствия. Охрана гидросферы от загрязнения | Витамины. Их биологическая роль
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 695; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.