Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Присоединение корня. Поле разложения многочлена




Пусть f(x) - неприводимый многочлен степени n над числовым полем P, и пусть корень этого многочлена в некотором числовом поле T (P содержится в T). Построим наименьшее поле, содержащее поле P и . Легко убедится, что числа вида , где принадлежат этому полю. Обозначим множество этих чисел .

Теорема 2.12 Множество является числовым полем.

Доказательство. Замкнутость относительно сложения, вычитания, умножения очевидна. Покажем замкнутость относительно деления. По числу построим многочлен из P(x). Наибольший общий делитель многочленов a(x) и f(x) равен 1 (в силу неприводимости f(x)), следовательно, найдутся многочлены u(x) и v(x) из P(x), что u(x)f(x)+v(x)a(x)=1. Подставим вместо x значение . Получим равенство . Поскольку , и , то теорема доказана.

В качестве можно брать любой корень многочлена f(x). В результате будут получаться различные поля .

Определение 2.3 Числовые поля называются изоморфными, если существует взаимно однозначное соответствие, сохраняющее операции +,*.

Следствие 2.5 Пусть f(x) - неприводимый многочлен над полем P, и a, b - его корни в некотором поле T. Тогда поле P(a) изоморфно полю P(b).

В приведённых выше построениях везде фигурировало поле T, которое содержало корень многочлена. Избавимся от этого поля. Это можно сделать следующим образом. Обозначим через P[x] множество остатков от деления многочленов из P(x) на неприводимый многочлен f(x) (над P). На этом множестве определим операции сложения и умножения. Сложение - обычное сложение многочленов, а в качестве результата умножения многочленов возьмём остаток от деления их произведения на f(x). В результате получим множество многочленов над которыми определены операции сложения и умножения, причём это множество изоморфно P(a), где a - корень f(x) в некотором поле T. При построении поля P[x] поле T никак не участвует.

Говорят, что поле P[x] получено присоединением корня f(x). При этом вопросом о существовании поля, в котором f(x) имеет корень, можно не задаваться. Следует отметить, что элемент x поля P[x] является корнем f(x).

Теорема 2.13 Пусть f(x) - многочлен над полем P. Тогда существует поле T (P содержится в T) над которым многочлен f(x) разлагается на линейные множители

Доказательство. Разлагаем f(x) на неприводимые множители. Если все множители линейны, то теорема доказана. В противном случае возьмём неприводимый многочлен степени больше 1 и присоединим его корень. Далее, повторим рассуждения. Процесс бесконечно продолжаться не может из-за конечности степени f(x).

Поле, над которым многочлен разлагается на линейные множители, называется полем разложения многочлена.




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 854; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.