Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Фазовая интерференция электронных волн




 

Фазовая интерференция происходит в структурах с размерами порядка длины фазовой когерентности электрона в данном материале, что типично для твердотельных структур с нанометровыми размерами. При таких соотношениях проводимость структуры определяется эффектами, связанными с фазовой интерференцией. Это имеет место в чисто баллистических или квазибаллистических режимах переноса носителей заряда. Последний допускает слабое рассеивание носителей заряда, которое является типичным для большинства наноструктур, рассматриваемых как системы с незначительным разупорядочением. В этом случае критическая длина определяется средней длиной свободного пробега носителей заряда при неупругом рассеивании. Рассмотрим интерференцию двух волн, представленных волновыми функциями в общем виде

. Когда две таких волны складываются, вероятность появления новой волны определяется соотношением

(1.1)

 

Эта вероятность может изменяться в пределах от суммы амплитуд двух взаимодействующих волн до их разности, в зависимости от соотношения их фаз (

φ1 и φ2). В отличие от наноразмерных структур для макроскопических систем не важно сохранять какую-либо информацию относительно фаз взаимодействующих электронных волн, по крайней мере, по двум причинам. Во-первых, их размеры больше и длины фазовой когерентности, и средней длины свободного пробега носителей заряда при неупругом рассеивании. Во-вторых, усреднение по большому количеству парных взаимодействий полностью сглаживает эффект от интерференции отдельных электронных волн, потому что все они объединяются случайным образом. Этого не происходит в наноструктурах, где усреднение сведено к минимуму, что и позволяет наблюдать квантовые интерференционные эффекты.

Замечательной иллюстрацией квантовой интерференции фаз в низкоразмерных структурах является эффект Ааронова – Бома (Aharonov – Bohm effect). Конструкция интерферометра, подходящего для экспериментального наблюдения этого эффекта, показана на рис. 10.1. Электронные волны, поступающие из волновода к левому входному контакту, расщепляются на две группы равных по амплитуде волн, огибают две половинки кольца, встречаются и интерферируют в правой части кольца и покидают его через правый выводной контакт. Маленький соленоид, несущий магнитный поток Ф, размещается полностью внутри кольца так, что его магнитное поле перпендикулярно плоскости кольца и проходит через отверстие в нем. Желательно использовать волновод достаточно малых размеров, чтобы ограничить в нем возможное количество электронных мод одной или несколькими.

Рис. 10.1. Конструкция интерферометра для экспериментального наблюдения эффекта Ааронова–Бома.

 

Полный поток через структуру от левого входа к правому выходу зависит от соотношения между длиной ветвей кольца и средней длиной свободного пробега электронов при неупругом рассеянии в материале кольца. Если это отношение удовлетворяет требованиям квазибаллистического транспорта, то ток в выходном контакте определяется фазовой интерференцией электронных волн на его входе. Векторный потенциал А магнитного поля, проходящего через отверстие в кольце, азимутален. Следовательно, электроны, проходящие по каждой из ветвей кольца, двигаются или параллельно, или антипараллельно векторному потенциалу. Другими словами, магнитное поле соленоида в одной ветви (на рисунке 10.1 верхней) способствует движению электронов вдоль круга, в другой ветви (на рисунке 10.1 нижней), препятствует. В результате появляется разница в фазах электронных волн, прибывающих к выходному контакту из различных ветвей кольца. Эта разница определяется как , где Φ0 = h/e – квант магнитного потока (h – постоянная Планка, e – заряд электрона). Для появления интерференции электронных волн необходима периодичность в количестве квантов магнитного потока, пронизывающего кольцо. Интерференция происходит конструктивно – с увеличением амплитуды результирующей электронной волны, когда Ф кратно Ф0, и деструктивно – с уменьшением амплитуды результирующей электронной волны, в промежутке между двумя ближайшими кратными значениями. Это приводит к периодической модуляции поперечной проводимости (сопротивления) кольца магнитным полем, которая известна как магнитный эффект Ааронова–Бома. Следует обратить внимание на то, что реальные устройства едва ли удовлетворяют требованиям для наблюдения «чистого» эффекта Ааронова–Бома. Дело в том, что магнитное поле проникает через ветви кольца интерферометра, а не только в область, ограниченную ими. Это ведет к дополнительным изменениям тока при высоких магнитных полях, в то время как при низких магнитных полях преобладает закрытый (ограниченный кольцом) поток. Наиболее показательным экспериментальным подтверждением эффекта Ааронова–Бома является изменение сопротивления углеродных нанотрубок, помещенных в магнитное поле. Рис. 10.2 иллюстрирует схему такого эксперимента и наблюдаемые изменения сопротивления.

Рис. 10.2. Схема измерения сопротивления углеродных нанотрубок, помещенных в магнитное поле (а), и наблюдаемые изменения сопротивления (б).

 

Так как нанотрубка представляет собой цилиндрический проводник, электроны могут распространяться в ней или по часовой стрелке, или против часовой стрелки. Взаимодействие этих двух потоков приводит к периодической модуляции продольного электрического сопротивления трубки, поскольку магнитный поток через нее изменяется. В этом случае период модуляции равен Φ0/2 = h/2e. Магнитное поле в максимумах сопротивления коррелирует с магнитным потоком и поперечным сечением трубки. Данный эффект относительно сильный и может наблюдаться, даже если электронный перенос в трубке носит диффузионный характер.

Изменение проводимости в результате фазовой интерференции может происходить и в традиционных низкоразмерных проводниках, которые являются обычно длинными и тонкими. Примеси или другие дефекты внутри такого проводника создают потенциальные барьеры, которые электронные волны должны преодолеть. Схематически это проиллюстрировано на рис.10.3 для одного атома примеси (или другого типа точечного дефекта), нарушающего когерентное распространение электронов. При низких температурах материал проводника обычно вырожден и только носители с энергией Ферми принимают участие в транспортных процессах. Энергию Ферми можно изменить или некоторым потенциалом, прикладываемым к затвору, покрывающему проводник, или магнитным полем, которое обедняет зону проводимости. В результате полная поверхность Ферми, по которой происходит транспорт носителей, слегка сдвигается. После изменения энергии Ферми носитель, который передвигался по одну сторону от дефекта (путь A), может изменить свою траекторию так, что он станет двигаться с другой стороны дефекта (путь B). Изменение траектории эквивалентно смыканию петли Ааронова–Бома, составленной из А- и B-путей. В результате возникают колебания электронной проводимости материала на этом участке. Среднее квадратичное отклонение проводимости наноструктур имеет порядок e2/h, независимо от их размера. Это явление называется универсальной флуктуацией проводимости (universal conductance fluctuations). Оно весьма постоянно во времени и зависит от особенностей конфигурации рассеивающих центров в образце.

Рис. 10.3. Расщепление траектории движения электронов в твердом теле под действием атома примеси.

 

Таким образом, чтобы наблюдать квантовые изменения проводимости, связанные с фазовой интерференцией электронных волн, размеры образца должны быть сопоставимы с длиной фазовой когерентности, которая определяется плотностью центров рассеивания в материале образца. Как только образец становится «большим», квантованные колебания проводимости сглаживаются усреднением по значительному количеству интерференционных процессов.

 

 




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 2527; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.