Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Динамика. В динамике решаются два типа задач





3.1 Задачи динамики


В динамике решаются два типа задач. Первая состоит в определении действующих сил при заданном законе движения материального объекта (точки или системы). Вторая задача обратная первой: определяется закон движения материального объекта при известных действующих на него силах.


^ 3.2. Основные понятия динамики


Инерционность - свойство материальных тел сохранять состояние покоя или равномерного прямолинейного движения, пока внешние силы не изменят этого состояния.

^ Масса - количественная мера инерционности тела. Единица измерения массы - килограмм (кг).

Материальная точка - тело, обладающее массой, размерами которого при решении данной задачи пренебрегают.

^ Центр масс механической системы - геометрическая точка, координаты которой определяются формулами.


(3.1)


где mk, xk, yk, zk - масса и координаты k - той точки механической системы,

m - масса системы.

В однородном поле тяжести положение центра масс совпадает с положением центра тяжести.

^ Момент инерции материального тела относительно оси – количественная мера инертности при вращательном движении.

Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки от оси.


JZ = m×r2 (3.2)


Момент инерции системы (тела) относительно оси равен арифметической сумме моментов инерции всех точек.


JZ = åmk×rk2 (3.3)


Сила инерции материальной точки - векторная величина, равная по модулю произведению массы точки на модуль ускорения и направленная противоположно вектору ускорения


(3.4)


^ Сила инерции материального тела - векторная величина, равная по модулю произведению массы тела на модуль ускорения центра масс тела и направленная противоположно вектору ускорения центра масс


, (3.5)


где - ускорение центра масс тела.

Элементарный импульс силы - векторная величина , равная произведению вектора силы на бесконечно малый промежуток времени dt

, (3.6)


Полный импульс силы за Dt равен интегралу от элементарных импульсов

(3.7)


Элементарная работа силы - скалярная величина dA, равная скалярному произведению вектора силы на бесконечно малое перемещение d .

Скалярное произведение векторов равно произведению их модулей на косинус угла между направлениями векторов.


dA = F×ds×cosa, (3.8)


где a - угол между направлениями векторов перемещения и силы.

Работа силы на конечном перемещении точки её приложения равна интегралу от элементарной работы, взятому по перемещению.


(3.9)


Единица измерения работы - Джоуль (1 Дж=1 Н×м).

Количество движения материальной точки - векторная величина , равная произведению массы m на её скорость .


= (3.10)

Количество движения механической системы равно векторной сумме количества движения её точек.


(3.11)


или с учетом формул (3.1).

, (3.12)


где: m- масса механической системы,

- вектор скорости центра масс системы.

Кинетическая энергия материальной точки - скалярная величина Т, равная половине произведения массы точки на квадрат её скорости.

T= (3.13)


Кинетическая энергия механической системы равна сумме кинетических энергий всех её точек.


(3.14)


^ 3.3. Аксиомы динамики


Первая аксиома - закон инерции.

Если на свободную материальную точку не действуют никакие силы или действует уравновешенная система сил, то точка будет находиться в состоянии покоя или равномерного прямолинейного движения.

^ Вторая аксиома- закон пропорциональности ускорения.

Ускорение, сообщаемое материальной точке действующей на неё силой, пропорционально этой силе и по направлению совпадает с направлением силы.


, (3.15)


Выражение (3.15) называют основным законом динамики.

Третья аксиома - закон противодействия.

Силы, с которыми действуют друг на друга две материальные точки, равны по модулю и направлены вдоль прямой, соединяющей эти точки, в противоположные стороны


, (3.16)


^ Четвертая аксиома - закон независимости действия сил.

При действии на материальную точку системы сил полное ускорение этой точки равно геометрической сумме ускорений от действия каждой силы


, (3.17)


^ 3.4. Дифференциальные уравнения динамики


Дифференциальные уравнения движения точки связывают ускорение точки с действующими на нее силами. Фактически дифференциальные уравнения являются записью основного закона динамики в явной дифференциальной форме.

Для абсолютного движения точки (движение в инерциальной системе отсчета) дифференциальное уравнение имеет вид

, (3.18)


Векторное уравнение (3.17) может быть записано в проекциях на оси прямоугольной инерциальной системы координат


,

, (3.19)

,


При известной траектория движения точки уравнение (3.18) может быть записано в проекциях на оси естественной системы координат


, (3.20)


C учетом (2.8) уравнения примут вид


(3.21)


^ 3.5 Общие теоремы динамики


Общие теоремы динамики устанавливают зависимость между мерами механического движения и механического взаимодействия. Выводы теорем являются результатом тождественного преобразования основного закона динамики.

^ Теорема об изменении количества движения: изменение количества движения материальной точки (механической системы) за конечный промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени


-для материальной точки; (3.22)

-для механической системы. (3.23)


Теорема об изменении кинетической энергии: изменение кинетической энергии точки (механической системы) при её перемещении равно сумме работ всех действующих внешних сил на этом перемещении


- для материальной точки (3.24)

- для механической системы (3.25)


Кинетическая энергия механической системы определяется в соответствии с (3.14), при этом для твердых тел выведены следующие зависимости


-при поступательном движении тела, (3.26)

- при вращательном движении тела, (3.27)

- при плоско-параллельном движении тела. (3.28)


Моменты инерции некоторых однородных тел

 

Рис. 3.1 Рис.3.2. Р ис.3.3.


Момент инерции цилиндра относительноего оси (рис. 3.1.)



Момент инерции стержня относительно оси z (рис.3.2)



Момент инерции прямоугольной пластины относительно осей х и y (рис.3.3)



Момент инерции шара определяется по формуле:


В общем случае работа сил определяется в соответствии с (3.8),(3.9).В ряде случаев действия сил работа может быть определена по частным зависимостям.


Работа силы тяжести


, (3.29)


где: - сила тяжести,

- изменение положения тела по вертикали.

Работа силы при вращательном движении тела


, (3.30)


где: - момент силы,

- угловая скорость тела.

Следует иметь в виду, что работа, как скалярная величина, может быть положительной или отрицательной. Работа будет положительной если направление действия силы совпадает с направлением движения.


^ 3.6 Принцип Даламбера


Изложенные выше методы исследования движения тел, базируются на законах Ньютона. Разработаны методы, в основу которых положены другие принципы. Одним из них является принцип Даламбера. Принцип формулируеся: если в любой момент времени к действующим на точку силам присоединить силы инерции, то полученная система сил будет уравновешенной


, (3.31)


или для механической системы


(3.32)


Принцип Даламбера позволяет применять к решению задач динамики более простые методы статики, поэтому он широко используется в инженерной практике.





Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 633; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.