Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Устройства ввода текстовой, звуковой и видео информации. Цифровые фотоаппараты, цифровые видеокамеры (камкордеры), цифровые диктофоны, цифровые плейеры

Цифровой фотоаппарат — устройство, являющееся разновидностью фотоаппарата, в котором светочувствительным материалом является матрица или несколько матриц, состоящая из отдельных пикселей, сигнал с которых представляется, обрабатывается и хранится в самом аппарате в цифровом виде. Несмотря на функциональное сходство, цифровые видеоустройства самого разного назначения, такие как камеры видеонаблюдения и веб-камеры, фотоаппаратами обычно не называются, если не позволяют сохранить снимки в самом устройстве или на вставленном в устройство носителе информации. В ряде случаев современная видеозаписывающая аппаратура имеет функции получения статических снимков, а значительная доля устройств, называемых цифровыми фотоаппаратами, умеет осуществлять запись видеоизображения и звука и выводить видеосигнал в телевизионном формате. Поэтому граница между видео- и фотооборудованием в цифровую эпоху в достаточной степени условна и определяется скорее тем, какие задачи ставит оператор, нежели тем, какова функциональная «начинка» камеры. Цифровые фотоаппараты можно поделить на несколько классов: Фотоаппараты со встроенной оптикой: Компактные («мыльница» традиционных размеров). Характеризуются малыми размерами и весом. Малый физический размер матрицы означает низкую чувствительность или высокий уровень шумов. Также этот тип камер обычно отличает отсутствие или недостаточная гибкость ручных настроек экспозиции. Сверхкомпактные, миниатюрные. Отличаются не только размерами, но часто и отсутствием видоискателя и экрана. Встроенные в другие устройства. Отличаются отсутствием собственных органов управления. Псевдозеркальные — внешним видом напоминают зеркальную камеру, а также, как правило, помимо цифрового дисплея, оснащены видоискателем-глазком. Изображение в видоискателе такого аппарата формируется на отдельном цифровом экране, или на поворачивающемся основном экране. Как правило, имеют резьбу на объективе для присоединения насадок и светофильтров (пример — Konica Minolta серия моделей Z). Полузеркалка — жаргонный термин, описывающий класс аппаратов, в которых имеется наводка по матовому стеклу через съёмочный объектив, однако нет возможности объектив менять. В таких аппаратах оптическая схема содержит светоделительную призму, которая направляет от 10 до 50 % светового потока на матовое стекло, а остальное передается на матрицу. (примеры — Olympus E-10, E-20). Практически все цифровые фотоаппараты используют флэш-память, но есть также фотоаппараты, где используются оптические диски или дискеты в качестве носителя информации. Ряд фотоаппаратов имеют небольшой объем встроенной флеш-памяти, которой хватает для 2-30 снимков. Самые распространенные на сегодняшний день форматы: CF (Compact Flash). SD (Secure Digital). MMC (Multimedia Card). MS (Memory Stick) фирмы Sony xD (xD-Picture Card),Устаревшие носители информации: SM (SmartMedia) MD (Microdrive). Термин «полупрофессиональный цифровой фотоаппарат» («просьюмер» или «просьюмерка» — калька с англ. prosumer от англ. professional и англ. consumer) обычно употребляется по отношению к псевдозеркальным аппаратам, полузеркалкам и ультразумам, но не является содержательным с технической и потребительской точки зрения. Термином «профессиональные» обычно называют зеркальные или дальномерные фотоаппараты с кроп-фактором не менее Kf=1,6 и обладающим рядом других отличительных особенностей. Термин «Камера начального уровня» употребляется по отношению к относительно дешёвым моделям какой-либо серии фотоаппаратов, в какой-либо степени урезанным в функциях. Термин «Ультразум», как правило, означает «мыльницу» с высокократным зум-объективом. Однако с течением времени кратность объектива, с которой начинается «ультра-», меняется. Так, например, называли 8x зумы при сравнении с 6x. Вообще, многие пользователи не догадываются, что такое «Зум», считая «чем больше — тем лучше», а между тем это — всего лишь отношение максимального к минимальному фокусных расстояний объектива. И сравнивать фотоаппараты нужно как раз по фокусному расстоянию, от которого зависит «угол обзора» — то есть что войдёт в кадр. Цифровой зум, Цифровое увеличение, Апсамплинг (англ. Upsampling — буквально, повышение детализации) — функция многих цифровых аппаратов, при использовании которой выбирается центральная часть снимка и увеличивается до размеров стандартного в данном аппарате кадра. Реальное число деталей при этом не увеличивается, и практический смысл в этой функции отсутствует. Однако, величина «цифрового зума» используется, особенно будучи перемноженной с величиной оптического зума (при этом возникают такие крупные значения зума, как 400x или 500x), как важный для покупателя параметр «крутости» камеры. Опытный фотограф использует программы редактирования изображений для получения аналогичного результата, но с гораздо более контролируемым качеством. Однако «цифровой зум» оказывается полезен при видеосъёмке, если требуется высокая оперативность получения результата и нет времени на обработку изображения. Мегапиксель — в мегапикселях измеряется одна из важных характеристик цифрового фотоаппарата — разрешение матрицы. Маркетинг, однако, преувеличивает его значение, и «прогресс» в области цифровых фотоаппаратов в сознании покупателя связан с ростом числа мегапикселей. В последние годы выбор цифровой видеокамеры становился все более нелегким делом: количество моделей и форматов увеличивалось и продолжает увеличивается, причем все более быстрыми темпами: miniDV, MPEG-2, DVD, HDD, Flash, HDV, MPEG4, AVCHD, SD, HD... от всего этого действительно может заболеть голова. А ведь хочется подойти к выбору видеокамеры осознанно, имея хотя бы минимальное представление обо всем этом многообразии. Эта статья призвана дать минимально-необходимые сведения о многообразии форматов и особенностей современных бытовых видеокамер и о том, каковы преимущества и недостатки каждого из них. Здесь мы сосредоточимся на "классических" видеокамерах (хотя само понятие — "классическая видеокамера" — "размывается" довольно быстрыми темпами, но все же...). А начнем мы с рассмотрения основных "типов" и "классов" современных цифровых видеокамер. Основные различия между видеокамерами, которые мы будем использовать при классификации, — это тип носителя видео, формат записи видео и размер кадра полученного видео (стандартное или высокое разрешение). Самая простая часть в нашей классификации связана с типами носителей видео, которые в современных цифровых видеокамерах представлены кассетами miniDV, дисками DVD, жесткими дисками (HDD) и flash-карточками. Останавливаясь на каждом из этих типов в отдельности, можно отметить, что кассета до сих пор является бесспорным лидером по соотношению емкость/цена, на одну кассету miniDV можно записать 60 минут (около 13 ГБ) цифрового видео, а стоит она около 100-150 рублей. сразу хочется развеять один миф, который порой приходится слышать от не очень сведущих людей и который заключается в том, что на кассету записывается "полуцифровая информация" (объяснение этого "термина" оставим на совести его изобретателей). На самом деле, в цифровой видеокамере на кассету пишется чисто цифровая информация, не отличающаяся в этом плане от той, что пишется на DVD или жесткий диск. Главным недостатком кассеты, как носителя цифрового видео, является невозможность прямого доступа к любому участку видео; чтобы просмотреть ваше видео не с самого начала, вам придется воспользоваться перемоткой, что занимает некоторое время и расходует ресурс лентопротяжного механизма. Но, с другой стороны, ничто не мешает "сбросить" видео с кассеты на жесткий диск компьютера, и, таким образом, решить эту проблему. Правда, тут проявляется еще один недостаток кассеты — перенос видео на компьютер идет в режиме реального времени, то есть, чтобы перенести на компьютер час записанного видео вам понадобится ровно... один час. Описанные выше объективные недостатки (невозможность прямого доступа и относительно большое время, затрачиваемое на перенос записанного видео с видеокамеры на компьютер), а также выдуманный "недостаток" насчет "полуцифрового видео" (он проявляется в разных формах, но всегда сводится к стойкому представлению о кассете как о "не цифровом" носителе), обуславливает стойкую тенденцию, проявляющуюся в потере интереса все большего и большего числа покупателей к моделям видеокамер, использующих кассету. А альтернатива? Она состоит в моделях видеокамер, использующих для записи видео диски DVD и HDD, а также flash-карточки. Они, разумеется, поддерживают прямой доступ к любому участку записанного видео, да и скорость копирования этого видео на компьютер ограничена только возможностями носителя видео (скоростью чтения) и скоростью интерфейса (чаще всего — USB 2.0). Правда, по соотношению емкость/цена они сильно проигрывают кассете miniDV. Емкость DVD-дисков, используемых в современных бытовых видеокамерах, составляет всего 1.4/2.6 ГБ (последняя цифра — для двухслойных дисков), что позволяет записывать на такой диск около 20-35 минут видео в формате MPEG-2 стандартного разрешения и с максимальным качеством. Прямо скажем, не густо.... Решить эту проблему призваны видеокамеры, носителем видео в которых выступает жесткий диск. В современных видеокамерах объем такого диска составляет от 20 до 100 ГБ, что позволяет записывать уже много часов видео в максимальном качестве. А flash-видеокамеры могут привлечь тем, что при достаточно большом объеме носителя видео (до 4-8 ГБ, что больше, нежели объем дисков miniDVD) они практически лишены движущихся частей в механизме, ответственном за запись и воспроизведение видео (типа лентопротяжного механизма в кассетных видеокамерах или вращающихся дисков DVD/HDD), а значит, обладают пониженным энергопотреблением и большей надежностью. Кроме того, они еще и заметно более компактны. Прежде всего, надо отметить, что все без исключения современные цифровые видеокамеры используют те или иные алгоритмы сжатия, компрессии исходного видео, и "формат записи" как раз характеризует используемые алгоритмы сжатия. Посмотрим, какие форматы записи встречаются сегодня в цифровых видеокамерах стандартного разрешения, о видеокамерах высокого разрешения мы поговорим особо, несколько позже. DV — формат видео с покадровой компрессией (сжатием), то есть каждый кадр видео сжимается индивидуально. При этом коэффициент компрессии может быть переменным в пределах одного кадра — сложные для сжатия области картинки сжимаются с меньшим коэффициентом компрессии, а простые — с большим. При этом общий коэффициент компрессии для всего кадра остается постоянным (5:1). Результирующий поток для видео составляет примерно 25 Мбит/с. Размер кадра DV фиксирован и составляет (для стандарта PAL) 720х576 точек. Этот формат используется в видеокамерах miniDV, а запись видео, соответственно, производится на кассеты miniDV. MiniDV видеокамера. Записывает видео в формате DV на miniDV кассету. Преимуществами этого формата являются наилучшее на сегодняшний день качество видео стандартного разрешения и наибольшее, по сравнению с другими форматами, удобство редактирования, связанное с минимальными потерями качества видео при "рекомпрессии" (расжатие — редактирование: наложение эффектов, титров, переходов — повторное сжатие видео). MPEG-2 — формат видео с так называемой межкадровой компрессией. При сжатии видео в этом формате сначала выбираются так называемые ключевые кадры — они сжимаются примерно так же, как это делалось в формате DV. Но ключевые кадры составляют лишь небольшую часть всех кадров сжимаемого видео, а остальные кадры сжимаются по другому алгоритму. Сжимается не сам кадр, а различия между кадрами. То есть (и в этом состоит важнейшее отличие MPEG-2 от DV) сжатие у нас уже не покадровое, для большинства кадров видеопоследовательности мы имеем не сжатый кадр, а сжатую информацию о различиях между данным кадром и ближайшими к нему ключевым и промежуточными кадрами. При этом мы можем достичь более высокой степени компрессии при качестве, сравнимом с DV. Но тут есть и обратная сторона — во-первых, кодирование/декодирование в MPEG-2 требует больших аппаратных ресурсов, поскольку сам процесс кодирования гораздо более сложен, нежели кодирование в DV. Bo-вторых, при перекодировании (например, при редактировании видео, записанного в MPEG-2) потери в качестве на рекомпрессию будут больше, нежели у DV — следствие опять-таки более сложного алгоритма кодирования и большего коэффициента компрессии. То есть, MPEG-2 менее удобен для редактирования, нежели DV. И, наконец, в-третьих, MPEG-2 обеспечивает сравнимое с DV качество при гораздо большем коэффициенте сжатия только для относительно статичной картинки. В этом случае изменения от кадра к кадру малы, и межкадровое сжатие MPEG-2 работает хорошо. Но на динамичных сценах, где изменение от кадра к кадру велико, качество межкадровой компрессии MPEG2 может значительно уступать качеству покадровой компрессии DV (вам наверняка приходилось наблюдать "квадраты" на некачественно закодированном DVD). DVD-камера, записывающая видео в формате MPEG-2 стандартного разрешения на диск miniDVD. Этот формат применяется в DVD и HDD-видеокамерах, а также во flash-видеокамерах стандартного разрешения. Размер кадра, как и в формате DV, составляет 720х576 точек (исключение — видеокамеры Panasonic, у которых этот размер равен 704х576 точек). HDD видеокамера, записывающая видео стандартного разрешения в формате MPEG-2 на встроенный жесткий диск. Видео высокого разрешения (далее, HD-видео, от англ. High Definition — высокая четкость) уверенно входит в нашу жизнь. Его распространению способствует увеличивающаяся популярность ЖК и плазменных телевизоров с большой диагональю, на которых видео стандартного разрешения смотрится уже "не очень". И если еще два года назад все бытовые HD-видеокамеры были представлены одной моделью — Sony HDR-HC1E, то сегодня все основные производители видеокамер (Sony, Panasonic, Canon, JVC) выпускают и постоянно расширяют свои линейки HD-видеокамер. Но при всем разнообразии моделей львиную долю на рынке бытовых видеокамер занимают только два формата видео высокого разрешения: HDV и AVCHD, к рассмотрению которых мы сейчас и перейдем. HDV — формат HD-видео, первым проникший на бытовой рынок (именно в этом формате снимала вышеупомянутая Sony HC1). Перед разработчиками стандарта HDV стояла задача, во-первых, значительно увеличить разрешение финального видео по сравнению с видео стандартного разрешения, а во-вторых, оставить величину видеопотока сравнимой с той, что мы имеем в формате DV, это дало бы возможность записывать HD-видео на те же кассеты miniDV, не жертвуя при этом временем съемки на одну кассету. Для решения этой задачи разработчики стандарта HDV (в качестве которых выступили Sony, Canon, JVC и Sharp) использовали уже знакомый нам формат компрессии MPEG-2. При этом величина видеопотока осталась такой же, как и для DV, — 25 Мбит/с. Это было достигнуто, помимо использования более высокой степени компрессии, с помощью анаморфного преобразования. Его суть в том, что первоначальный кадр, имеющий размер 1920х1080 точек, перед записью на ленту, помимо прочего, еще и сжимается по горизонтали до 1440 точек, так что размер кадра готового видео составляет 1440х1080 и оно "сплюснуто" по горизонтали, его пропорции нарушены. При воспроизведении такого видео устройство воспроизведения (например, программа-плеер на компьютере или сама видеокамера в режиме воспроизведения) производит обратное преобразование 1440->1920, восстанавливая при этом нарушенные пропорции. Анаморфное преобразование позволяет "уложиться" в поток 25 Мбит/с, не прибегая к "запредельным" коэффициентам компрессии, а значит, сохраняя высокое качество видео. А оборотной стороной его использования является сниженное горизонтальное разрешение, информация, потерянная во время преобразования 1920->1440, при обратном преобразовании уже не восстанавливается. Остальные характеристики формата: чересстрочное видео с размером кадра 1920х1080 (1080i, i — interlaced, чересстрочное), форматное соотношение 16:9, видеопоток в 25 Мбит/с, формат компрессии MPEG-2, носитель видео — кассета miniDV. HDV видеокамера, записывает видео в формате MPEG-2 высокого разрешения на кассету miniDV. AVCHD — формат HD-видео, совместно предложенный Sony и Panasonic летом 2006 года. Необходимость появления этого формата была обусловлена двумя основными факторами. Во-первых, явным дисбалансом между устройствами записи/просмотра видео высокой четкости и устройствами его воспроизведения, сложившимся на современном рынке. Действительно, на рынке в достаточном количестве и по относительно приемлемым ценам присутствуют ЖК и плазменные телевизоры высокой четкости, а также кинотеатральные проекторы, для которых стандартного разрешения уже явно не хватает. Нет недостатка и в видеокамерах высокой четкости. А носителей, на которые можно было бы записывать видео высокой четкости, которые были бы достаточно вместительны для этой цели — практически нет. Затянувшееся противостояние HD-DVD и Blu-Ray снижает интерес пользователей к обоим форматам, да и производство приводов на "синем" лазере еще не отлажено в должной мере, а цена на уже имеющиеся на рынке приводы пока еще неоправданно высока. Их мало и они слишком дороги... Во-вторых, необходимость появления формата AVCHD обусловлена отказом большинства пользователей (на бытовом рынке, конечно) воспринимать кассету как средство хранения цифрового видео, мы уже говорили об этом выше. А значит, учитывая фактор номер один (малую распространенность приводов и дисков на основе "синего" лазера), надо придумать формат, который позволит записывать HD-видео на обычные DVD-диски и flash-карточки, и не жертвуя качеством этого видео в придачу. Так на сцене и появляется AVCHD. В его основу был положен формат компрессии H.264/AVC (его еще называют MPEG4 Part 10). Он использует более "продвинутые" и эффективные алгоритмы компрессии, чем рассмотренный нами выше MPEG-2, а значит, говоря проще, позволяет записать на носитель больше видео и в лучшем, нежели MPEG2 качестве. Что, собственно, нам и требовалось! Формат позволяет, как проводить анаморфное преобразование 1920->1440, так и не проводить его, работая с разрешением 1920х1080 на протяжении всех этапов кодирования вплоть до записи на носитель. Максимальный видеопоток, предусматриваемый форматом, составляет 24 Мбит/с, что почти соответствует потоку HDV при более совершенных алгоритмах компрессии, а значит, потенциально более высоком качестве. Правда, в видеокамерах выпуска 2007 года эти возможности формата еще не были использованы: видеопоток ограничивался 15 Мбит/с, и всегда использовалось анаморфное преобразование. Но эти возможности вполне могут быть использованы в будущих AVCHD-видеокамерах, так что тут есть куда расширяться, формат это позволяет. Недостатки AVCHD состоят в том, что, во-первых, применение формата H.264/AVC для кодирования видео требует очень и очень немалых (даже для сегодняшнего дня) компьютерных ресурсов. В частности, только для просмотра такого видео Sony рекомендует (минимально — на самом деле, видео в такой конфигурации будет подтормаживать, проверено на опыте) двухъядерный процессор на ядре NetBurst (Pentium 4) с частотой 2.8 ГГц (и 1 Гигом оперативки) или одноядерный Pentium 4 с частотой от 3.6 ГГц и выше. А что уж говорить о редактировании? Тут без Core 2 Duo E6600 и выше не обойтись! Так что если вы решили покупать видеокамеру формата AVCHD, то вам стоит задуматься — а не произвести ли для начала апгрейд домашнего компьютера... Во-вторых, из-за высокой степени компрессии, которую обеспечивает формат сжатия AVCHD, потери качества видео при рекомпрессии (которая всегда производится в местах вставки титров, переходов, эффектов) будут выше, нежели для формата HDV. Ведь H.264/AVC создавался как формат конечного хранения видео (то есть вы редактируете видео в каком-то другом формате, а потом сохраняете результат в H.264 с однократной компрессией) и, по-хорошему, не предназначен для редактирования. В-третьих, раз уж мы заговорили о редактировании, то надо сказать, что поддержка формата AVCHD в нормальных видеоредакторах пока менее широка, нежели поддержка формата HDV. Но для домашнего пользователя, который не очень "заморачивается" сложным редактированием своего видео, этот формат вполне подходит, тем более что видео в нем записывается на "прогрессивные" носители — диски miniDVD, жесткие диски, а также flash-карточки. Да и поддержка этого формата в современных "монтажках" постоянно расширяется, так что расширяются и возможности для редактирования AVCHD. Вид стабилизатора — электронный (цифровой) или оптический. Как известно, на современных бытовых камерах встречаются оба типа стабилизации изображения (компенсации дрожания камеры, и, соответственно, изображения, которое особенно заметно при съемке с рук на средних и больших значениях зума). В чем разница между этими двумя типами стабилизации, каковы достоинства и недостатки каждого из них? Электронная стабилизация основана на том, что часть пикселей на матрице камеры отводится на стабилизацию и не участвуют в формировании изображения (например, из 800К пикселей на матрице камеры только 400К участвуют в формировании картинки). "Лишние" пиксели служат своеобразным буфером — при дрожании камеры картинка "плавает" по матрице, электроника камеры фиксирует эти колебания, используя эти "буферные" пиксели и вносит необходимую коррекцию, компенсируя дрожание картинки. Как мы видим, основной особенностью электронного стабилизатора является то, что стабилизация происходит с помощью самой матрицы и электроники обработки изображения. При этом включение стабилизации влияет на работу этой системы, в частности, могут измениться экспопараметры (выдержка, диафрагма) — многие владельцы камер отмечают, в частности, что включение электронного стабилизатора часто приводит к уменьшению выдержки до 1/100 с. То есть электронная стабилизация может влиять, и обычно не лучшим образом, на качество изображения. При использовании оптического стабилизатора матрица не участвует в процессе стабилизации, стабилизация осуществляется на уровне оптической системы, с помощью линз и гироскопов (и, конечно, управляющей электроники, но она не связана с матрицей). То есть на матрицу изображение приходит уже после стабилизации, и для формирования картинки можно использовать всю площадь матрицы. Таким образом, при оптической стабилизации влияние стабилизатора на получение и обработку изображения минимально, что является несомненным плюсом этого способа.

Цифровой диктофон с видеокамерой. Предназначен для высококачественной записи звуковой и видео информации. Диктофон используется во многих сферах жизнедеятельности человека: в бизнесе (на переговорах, собраниям), путешествиях, медицине, маркетинге, образовании (запись лекций, семинаров). Он просто необходим писателям, режиссерам, журналистам и репортерам, дизайнерам. Красивая стильная упаковка может быть использована как подарочная, без дополнительной упаковки. Встроенная в корпус цветная камера незаметно вписывается и подчеркивает стильный дизайн диктофона. Режим видео- и фотосъемки. Встроенная память - 2 Гб. Запись в режиме "диктофон" - до 240 часов, в режиме "видео" - 105 мин. Может быть использован в качестве USB-ключа для хранения информации. Интерфейс: USB 2.0. Также может использоваться в качестве web-камеры

Цифровой плеер (в некоторых случаях «MP3-плеер») — музыкальный плеер — устройство, которое хранит, организовывает и воспроизводит музыкальные композиции сохранённые в цифровом виде. Изначально был способен проигрывать музыкальные файлы в формате MP3 (откуда и получил своё название), но нынче почти все цифровые плееры поддерживают много других форматов, например WMA, AAC, Ogg/Vorbis, FLAC, WAV.

 

<== предыдущая лекция | следующая лекция ==>
Устройства ввода текстовой, звуковой и видео информации. Сканер, графический планшет, MIDI-клавиатура, web-камера, сотовый телефон | Структура мультимедиа-технологии
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 475; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.014 сек.