Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Производная по направлению. Градиент

Пусть функция z=f(x,y) определена в некоторой окрестности точки M(x,y) и - некоторое направление, задаваемое единичным вектором . Координаты единичного вектора выражаются через косинусы углов, образуемых вектором и осями координат и называемых направляющими косинусами:

,

.

 

При перемещении точки M(x,y) в данном направлении l в точку функция z получит приращение

,

называемое приращением функции в данном направлении l.

 

 


Если ММ1=∆ l, то

.

Тогда

.

Опр. Производной функции z=f(x,y) по направлению называется предел отношения приращения функции в этом направлении к величине перемещения ∆ l при стремлении последней к нулю:

 

.

Производная по направлению характеризует скорость изменения функции в данном направлении. Очевидно, что частные производные и представляют собой производные по направлениям, параллельным осям Ox и Oy. Нетрудно показать, что

.

Пример. Вычислить производную функции в точке (1;1) по направлению .

Опр. Градиентом функции z=f(x,y) называется вектор с координатами, равными частным производным:

.

Рассмотрим скалярное произведение векторов и :

Легко видеть, что , т.е. производная по направлению равна скалярному произведению градиента и единичного вектора направления .

Поскольку , то скалярное произведение максимально, когда векторы одинаково направлены. Таким образом, градиент функции в точке задает направление наискорейшего возрастания функции в этой точке, а модуль градиента равен максимальной скорости роста функции.

Зная градиент функции, можно локально строить линии уровня функции.

Теорема. Пусть задана дифференцируемая функция z=f(x,y) и в точке градиент функции не равен нулю: . Тогда градиент перпендикулярен линии уровня, проходящей через данную точку.

Таким образом, если, начиная с некоторой точки, строить в близких точках градиент функции и малую часть перпендикулярной ему линии уровня, то можно (с некоторой погрешностью) построить линии уровня.

 

<== предыдущая лекция | следующая лекция ==>
Полный дифференциал функции многих переменных | Локальный экстремум функции двух переменных
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 361; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.