Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Занятие № 5. Тема: «Чрезвычайные ситуации, связанные с действием ионизирующих излучений»

LСтатья 25

Lразвития просветительной работы и услуг в области профилактической медицинской помощи и планировании размера семьи.

LСтатья 9

LГосударства - участники признают, что каждый ребенок имеет неотъемлемое право на жизнь.

LСтатья 6

LДля целей настоящей Конвенции ребенком является каждое человеческое существо до достижения 18-летнего возраста, если по закону, применимому к данному ребенку, он не достигает совершеннолетия ранее.

LСтатья 1

lГосударства – участники обеспечивают в максимально возможной степени выживание и здоровое развитие ребенка.

lГосударства – участники обеспечивают, чтобы ребенок не разлучался со своими родителями вопреки их желанию, за исключением случаев, когда компетентные органы, согласно судебному решению, определяют в соответствии с применимым законом и процедурами, что такое разлучение необходимо в наилучших интересах ребенка. Такое определение может оказаться необходимым в том или ином случае, например, когда родители жестоко обращаются с ребенком или не заботятся о нем и необходимо принять решение относительно места проживания ребенка...

lдоступа к образованию и их поддержки в использовании таких знаний;

lГосударства - участники принимают любые эффективные и необходимые меры с целью упразднения традиционной практики, отрицательно влияющей на здоровье детей.

lГосударства – участники обязуются поощрять международное сотрудничество и развивать его с целью постепенного достижения полного осуществления права, признаваемого в настоящей статье. В этой связи особое внимание должно уделяться потребностям развивающихся стран.

lГосударства – участники признают право ребенка, помещенного компетентными органами на попечение с целью ухода за ним, его защиты или физического, либо психического лечения, на периодическую оценку лечения, предоставляемого ребенку, и всех других условий, связанных с таким попечением ребенка.

 

Аварии с выбросом радиоактивных веществ

1. Открытие явления радиоактивности

В конце 1895 г. весь ученый мир был взволнован появившимися в печати сообщениями об открытии профессором Вильгельмом Конрадом Рентгеном лучей, обладавших необычными свойствами. Эти лучи, названные Рентгеном Х-лучами, свободно проходили сквозь дерево, картон и другие предметы, не прозрачные для видимого света. Впоследствии они получили название рентгеновских лучей — в честь открывшего их ученого. Это открытие вызвало большую сенсацию в научном мире. Может, по этой причине многими учеными не было замечено другое крупнейшее открытие конца XIX столетия — открытие французским ученым Анри Беккерелем в 1896 г. явления радиоактивности. Вскоре Беккерель на заседании Академии наук сообщил, что наблюдавшиеся им лучи, проникавшие подобно рентгеновским лучам через непрозрачные для света предметы и вызывавшие почернение фотопластинок, спонтанно, без всякого вмешательства извне, излучаются некоторыми веществами. Так было установлено, что новые лучи излучаются веществами, в состав которых входит уран. Вновь открытые лучи Беккерель назвал урановыми. Дальнейшая история новооткрытых лучей тесно связана с именами польского физика Марии Склодовской и ее мужа — француза Пьера Кюри. Супругам Кюри наука обязана тщательным всесторонним изучением вновь открытого явления, которое, по предложению Марии Склодовской-Кюри, было названо радиоактивностью.

Радиоактивность — это способность ряда химических элементов самопроизвольно распадаться и испускать невидимое излучение.

Глубокое изучение свойств радиоактивных элементов привело к созданию так называемой планетарной модели атома (английский физик Э. Резерфорд, 1911 г.), затем она была усовершенствована датским ученым Нильсом Бором. Этой моделью мы пользуемся до настоящего времени.

Атом похож на солнечную систему в миниатюре: вокруг крошечного ядра (размеры атома очень малы — поперечник атома составляет около 10~8 см, следовательно, на 1 см можно уложить 100 млн атомов) движутся по орбитам крошечные «планеты» — электроны. Размеры ядра в 100 тыс. раз меньше размеров самого атома, но плотность его очень велика, поскольку масса ядра почти равна массе его атома. Ядро, как правило, состоит из нескольких более мелких частиц, которые плотно сцеплены друг с другом. Некоторые из этих частиц имеют положительный заряд и называются протонами. Число протонов в ядре определяет, к какому химическому элементу относится данный атом: ядро атома водорода содержит всего один протон, атома кислорода — 8, атома урана — 92. В каждом атоме число электронов в точности равно числу протонов в ядре; каждый электрон несет отрицательный заряд, равный по величине заряду протона, так что в целом атом нейтрален.

В ядре, как правило, присутствуют и частицы другого типа — нейтроны, поскольку они электрически нейтральны. Ядра атомов одного и того же элемента содержат всегда одно и то же число протонов, но число нейтронов в них может быть разным. Атомы, имеющие ядра с одинаковым числом протонов, но различающиеся по числу нейтронов, относятся к разным разновидностям одного и того же химического элемента, называемым изотопами данного элемента. Чтобы отличить их друг от друга, к символу элемента добавляют число, равное сумме всех частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона и 146 нейтронов; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов химических элементов образуют группу нуклидов.

Некоторые нуклиды стабильны, то есть в отсутствие внешнего воздействия никогда не претерпевают никаких превращений. Большинство же нуклидов нестабильны, они все время превращаются в другие нуклиды. При каждом акте распада высвобождается энергия, которая и передается в виде радиоактивного излучения.

Сразу же после открытия радиоактивности перед наукой встал ряд новых вопросов: что собой представляют открытые лучи, каковы их природа и свойства, насколько широко радиоактивные вещества распространены в природе, какое действие они оказывают на человека и окружающую природу. Понадобилось, однако, несколько десятков лет, чтобы получить ответы на поставленные вопросы.

Прежде всего удалось решить вопрос о природе лучей, испускаемых радиоактивными атомами. Было установлено, что радиоактивное излучение — это сложное излучение, в состав которого входят лучи трех видов, отличающиеся друг от друга проникающей способностью. Хуже всего проникающие лучи получили название ос-лучей, проникающие лучше — р - лучей, и наконец, лучи, имеющие наибольшую проникающую способность, — у лучей.

Альфа-лучи оказались потоком частиц с массой, равной четырем, и двойным положительным зарядом, то есть потоком ядер атомов гелия. Эти частицы вылетают из ядра со скоростью 15 000-20 ООО км/с. Альфа-частицы обладают очень малой проникающей способностью. В зависимости от энергии частиц в воздухе они могут пройти путь 2-9 см, в биологической ткани — 0,02-0,06 мм; они полностью поглощаются листом чистой бумаги.

Бета-лучи — это поток р-частиц (электронов), вылетающих из ядер со скоростью света. Максимальная энергия р-частиц радиоактивных изотопов может различаться в широких пределах — от нескольких тысяч до нескольких миллионов электрон-вольт. Проникающая способность этих частиц значительно больше, чем а-частиц. р-частицы могут пройти в воздухе до 15 м, в воде и биологической ткани — до 12 мм, в алюминии — до 5 мм.

Гамма-лучи — представляют собой электромагнитное излучение с длиной волны 10~8—10 11 см. Проникающая способность у-лучей очень велика — значительно больше, чем а- и р-частиц. Чтобы ослабить у-излучение радиоактивного кобаль­та вдвое, нужно установить защиту из слоя свинца толщиной 1,6 см или слоя бетона толщиной 10 см. Чем короче длина волны, тем большую проникающую способность имеют у-лучи.

Таким образом, под проникающей радиацией понимают поток у-лучей и нейтронов. Коэффициенты половинного ослабления приведены в табл. 12.1.

Таблица 1. Коэффициенты половинного ослабления материалов, см

Материал Проникающая радиация

у-лучи нейтроны

 

Свинец 1,8 8,7
Сталь 2,8 4,7
Бетон    
Грунт, кирпич, песок    
Дерево    
Вода    

Сейчас каждый школьник знает, что проникающая радиация разрушает организм человека, может вызвать у него лучевую болезнь различной степени. Повреждений, вызванных в живом организме излучением, будет тем больше, чем больше энергии оно передаст тканям; количество переданной организму энергии называется дозой. За единицу дозы принят рентген [Р] (1 Р — это такая доза у-излучения, при которой в 1 см3 сухого воздуха при температуре 0 °С и давлении 760 мм рт. ст. образуется 2,08 млрд пар ионов (2,08 х 109)).

На организм воздействует не вся энергия излучения, а только поглощенная энергия. Поглощенная доза более точно характеризует воздействие ионизирующих лучей на биологические ткани и измеряется во внесистемных единицах, называемых рад. Достоинства рада как дозиметрической единицы в том, что его можно использовать для любого вида излучений в любой среде. Рад — это такая доза, при которой энергия, поглощенная 1 кг вещества, равна 0,01 Дж, или 105 эрг. Биологическим эквивалентом рада является бэр.

Надо учитывать тот факт, что при одинаковой поглощенной дозе сс-излучение гораздо опаснее (3- и у-излучений. Если принять во внимание этот факт, то дозу следует умножить на коэффициент, отражающий способность излучения данного вида повреждать ткани организма; а-излучение считается при этом в 20 раз опаснее других видов излучений. Пересчитанную таким образом дозу называют эквивалентной дозой; в СИ ее измеряют в единицах, называемых зивертами (Зв).

Следует учитывать также, что одни части тела (органы, ткани) более чувствительны, чем другие: например, при одинаковой эквивалентной дозе облучения возникновение рака в легких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения органов и тканей также следует учитывать с разными коэффициентами.

Умножив эквивалентные дозы на соответствующие коэффициенты и просуммировав по всем органам и тканям получим эффективную эквивалентную дозу, отражающую суммарный эффект облучения для организма, — она измеряется в зивертах.

Величины и единицы, используемые в дозиметрии ионизирующих излучений, приведены в табл. 2.

Таблица 2. Величины и единицы, используемые в дозиметрии ионизирующих излучений

Физическая величина и ее символ В СИ Внесис­темная Соотношение между ними  
Активность (С) Беккерель (Бк) Кюри (Ки) 1 Бк = 1 расп./с = 2,7 • 10"11 Ки  
      1 Ки = 3,7 ■ 1010 Бк  
Поглощенная Грей (Гр) Рад (рад) 1 Гр = 100 рад = 1 Дж/кг  
доза (Д)     1 рад = 10"2 Гр = 100 эрг/г  
Эквивалентная Зиверт (Зв) Бэр (бэр) 1 Зв = 100 бэр = 1 Гр • <2 = 1 Дж/кг о.
доза (Н)     1 бэр - 10"2 Зв - Ю-2 Гр • (2 = 1 рад • а

 

Активность радионуклида означает число распадов в секунду. Один беккерель равен одному распаду в секунду.

2. Естественные источники радиоактивности на Земле

Все виды флоры и фауны Земли, в том числе и млекопитающие, возникли и эволюционно развивались на протяжении сотен миллионов лет при постоянном воздействии естественного радиационного фона.Радиация — поток корпускулярной (а-, Р-, у-лучей, поток нейтронов) и (или) электромагнитной энергии.

Радиоактивный фон необходим для существования жизни на нашей планете. Детальное изучение влияния радиационного фона в дозе 1-10 мЗв в год, или 100-1000 мбэр в год, не выявило каких-либо изменений в состоянии здоровья человека, уровне заболеваемости и уменьшения продолжительности жизни. Однако повышенный уровень радиоактивности связан с риском для здоровья людей. Природные источники излучения можно разделить на космические и земные.

Космическое излучение состоит из галактического и солнечного, колебания которого связаны с солнечными вспышками. Космическое излучение достигает Земли в виде ядерных частиц, обладающих огромной энергией, часть которой расходуется на столкновение с ядрами атмосферного азота, кислорода, аргона, в результате чего на высоте 20 км возникает вторичное высокое энергетическое излучение, состоящее из мезонов, нейтронов, протонов, электронов. Северный и Южный полюсы получают больше радиации, чем экваториальные области, из-за наличия у Земли магнитного поля, отклоняющего заряженные частицы (из которых в основном и состоят космические лучи).

Люди, живущие на уровне моря, из-за космических лучей получают в среднем эффективную эквивалентную дозу около 300 мкЗв в год, люди, живущие выше 2000 м над уровнем моря, получают дозу облучения в несколько раз больше. Еще более интенсивному, хотя и относительно непродолжительному, облучению подвергаются экипажи и пассажиры самолетов. При подъеме на высоту от 4000 м (максимальная высота человеческих поселений — деревни шерпов на склонах Эвереста) до 12 000 м (максимальная высота полета трансконтинентальных лай­неров) уровень облучения возрастает в 25 раз.

В состав земных источников излучений входят 32 радионуклида ураново-радиевого и ториевого семейств, а также 40К, 87Ки и многие другие с большим периодом полураспада. Уровни земной радиации неодинаковы для разных мест земного шара и зависят от концентрации радионуклидов в определенном участке земной коры. Так 95% населения Франции, Германии, Италии, Японии, США живет в местах, где мощность дозы облучения в среднем составляет от 0,3 до 0,6 мЗв в год. Известны места, где уровни земной радиации намного выше.

Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи. В этом случае речь идет о внешнем облучении. Оно связано с у-излучением нуклидов, содержащихся в верхнем слое почвы, в воде, в нижних слоях атмосферы. Внутреннее облучение вызвано попаданием внутрь организма радионуклидов с воздухом, водой, пищей. В районах с нормальным фоном радиации доза внутреннего облуче­ния 1,35 мЗв (135 мбэр) почти вдвое больше дозы внешнего облучения 0,65 мЗв (65 мбэр), из которого 0,3 мЗв (30 мбэр) приходится на космическое облучение.

Основная масса радиоактивных элементов Земли содержится в горных породах, составляющих земную кору. Отсюда радиоактивные элементы переходят в грунт, затем в растения и, наконец, вместе с растениями попадают в организм животных и человека. Большая роль в этом круговороте принадлежит подземным водам. Они вымывают радиоактивные элементы горных пород, переносят их с одних мест на другие — так осуществляется обмен между живой и неживой природой.

Другой процесс, приводящий к распространению радиоактивных веществ в биосфере, — выветривание горных пород. Мельчайшие частицы, образовавшиеся в результате разрушения горных пород, под действием воды, льда, непрерывных колебаний температуры и других факторов переносятся ветром на значительные расстояния.

Говоря о роли земной коры в создании естественного радиационного фона, целесообразно подробнее остановиться на роли газа радона. Лишь недавно ученые поняли, что наиболее весомым из всех естественных источников радиации является невидимый, не имеющий вкуса и запаха тяжелый газ (в 7,5 раз тяжелее воздуха) радон. В природе радон встречается как член радиоактивного ряда, образуемого продуктами распада урана-238 и тория-232 (соответственно, радон-222 и радон-220). Радон высвобождается из земной коры повсеместно.

Радон вместе со своими дочерними продуктами радиоактивного распада ответственен примерно за 3/4 годовой индивидуальной эффективной эквивалентной дозы облучения, получаемой населением от земных источников радиации, и примерно за половину этой дозы от всех источников радиации. Большую часть этой дозы человек получает от радионуклидов, попадающих в его организм вместе с вдыхаемым воздухом, особенно в непроветриваемых помещениях.

Радон концентрируется в воздухе внутри помещений лишь тогда, когда они в достаточной мере изолированы от внешней среды. Поступая внутрь помещения тем или иным способом (просачиваясь через фундамент и пол из грунта или, реже, высвобождаясь из материалов, использованных в конструкции дома), радон скапливается в нем. Герметизация помещений с целью утепления только усугубляет дело, поскольку это затрудняется выход газа из помещения.

Самые распространенные строительные материалы — дерево, кирпич и бетон — выделяют относительно немного радона. Гораздо большей удельной радиоак­тивностью обладают гранит, пемза, используемые в качестве строительных материалов.

Еще один, как правило, менее важный источник поступления радона в жилье представляют собой вода и природный газ. Однако основная опасность, как это ни удивительно, исходит вовсе не от питья воды, даже при высоком содержании в ней радона. Люди потребляют большую часть воды в составе пищи и в виде горячих напитков (чай, кофе). При кипячении же воды или приготовлении горячих блюд значительная часть радона улетучивается. Гораздо большую опасность представляет попадание паров воды с высоким содержанием радона в легкие вместе с вдыхаемым воздухом, что чаще всего происходит в ванной. При обследовании домов в Финляндии оказалось, что в среднем концентрация радона в ванной комнате в 3 раза выше, чем на кухне, и приблизительно в 40 раз выше,чем в жилых комнатах. Исследования, проведенные в Канаде, показали, что все 7минут, в течение которых был включен теплый душ, концентрация радона и его дочерних продуктов в ванной комнате быстро возрастала, и прошло более полутора часов с момента отключения душа, прежде чем содержание радона вновь упало до исходного уровня. Процесс жизнедеятельности растения усваивают, а некоторые и накапливают в себе радиоактивные вещества, содержащиеся в почве, воде и в воздухе. Из всех радиоактивных веществ лучше всего усваивается растениями калий. Радиоактивность растений увеличивается от применения калийных удобрений, которые приводят одновременно к повышению урожайности и улучшению качества различных сельскохозяйственных культур (повышение сахаристости сахарной свеклы, крахмалистости зерен озимой пшеницы и т. д.).

В радиоактивности растений и животных — причина радиоактивности пищевых продуктов. Вместе с пищей радиоактивные вещества попадают в организм человека (табл. 3).

Таблица 3. Количество калия, употребляемого человеком с пищей
Продукт Ежемесячное потребление Содержание калия Ежемесячное
  кг в 1 кг продукта потребление калия, г
Молочные продукты 2,6 13,4  
Мясо 5,2 2,7  
Мука и зерно 5,8  
Овощи 7,3 2,2  
Картофель 4,0 4,4  
Цитрусовые 1,4 2,2  
Всего калия   -  

 

Вместе с пищей, водой, воздухом определенное количество радиоактивных элементов попадает в организм человека. Если бы все они оставались в организме, то радиоактивность человека была бы очень велика. Однако это не так — значительная их часть выделяется из организма вместе с мочой, калом, потом и др., то есть общая радиоактивность человека зависит от интенсивности обменных процессов.

3. АЭС и урановые рудники как источники радиоактивного загрязнения

Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются АЭС, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики.

Доза облучения от ядерного реактора зависит от времени и расстояния. Чем дальше человек живет от атомной электростанции, тем меньшую дозу он получает. Каждый реактор выбрасывает в окружающую среду целый ряд радионуклидов с разными периодами полураспада. Большинство радионуклидов распадается быстро и поэтому имеет лишь местное значение. Однако некоторые из них живут довольно долго и могут распространяться по всему земному шару, а определенная часть изотопов остается в окружающей среде практически вечно. При этом различные радионуклиды ведут себя по-разному: одни распространяются в окружающей среде быстро, другие — чрезвычайно медленно.

Ядерные реакторы работают на ядерном топливе. Примерно половина всей урановой руды добывается открытым способом, а другая половина — шахтным. Добытую руду везут на обогатительную фабрику, обычно расположенную неподалеку. И рудники, и обогатительные фабрики служат источником загрязнения окружающей среды радиоактивными веществами. Если рассматривать лишь непродолжительные периоды времени, то можно считать, что почти все загрязнение связано с местами добычи урановой руды. Обогатительные же фабрики создают проблему долговременного загрязнения: в процессе переработки руды образуется огромное количество отходов «хвостов».

Например, вблизи действующих обогатительных фабрик в Северной Америке скопилось уже 120 млн тонн отходов, и если положение не изменится, к концу века их количество возрастет до 500 млн тонн [20].

Эти отходы будут оставаться радиоактивными в течение миллионов лет. Таким образом, отходы являются главным долгоживущим источником облучения населения, связанным с атомной энергетикой. Однако их вклад в облучение можно уменьшить, если отвалы заасфальтировать или покрыть их поливинилхлоридом. Конечно, покрытие необходимо будет регулярно менять.

Урановый концентрат, поступающий с обогатительной фабрики, подвергается дальнейшей переработке и очистке и на специальных заводах превращается в ядерное топливо. В результате такой переработки образуются газообразные и жидкие радиоактивные отходы, однако дозы облучения от них намного меньше, чем на других стадиях получения ядерного топлива.

4. Аварии на радиационно-опасных объектах

Катастрофа на Чернобыльской АЭС стала самой страшной за весь период существования атомной энергетики трагедией для населения не только бывшего СССР, но и других стран Европы. Аварии на АЭС случались и раньше как в бывшем СССР, так и за рубежом.

Самая большая до Чернобыльской катастрофы авария произошла на американской АЭС «Тримайл-Айленд».

28 марта 1979 г. на АЭС «Тримайл-Айленд» из-за потери охлаждения реактора расплавилась активная зона, произошел выброс радиоактивных газов в атмосфери жидких радиоактивных отходов в реку Сукуахана. Блок 2, на котором произошла авария, не был оснащен дополнительной системой обеспечения безопасности. За 31 марта и 1 апреля из 200 тыс. человек, проживающих в радиусе 35 км от станции, около 80 тыс. покинули свои дома. В ночь с 28 на 29 марта в верхней части корпуса начал образовываться газообразный пузырь. Активная зона разогрелась до такой степени, что из-за химических свойств циркониевой оболочки стержней произошло расщепление молекул воды на водород и кислород. Пузырь объемом около 30 м3, состоявший главным образом из водорода и радиоактивных газов — криптона, аргона, ксенона и др., — сильно препятствовал циркуляции охлаждающей воды, поскольку давление в реакторе значительно возросло. Но главная опасность заключалась в том, что смесь водорода и кислорода могла в любой момент взорваться (что и произошло в Чернобыле). Сила взрыва была бы эквивалентна взрыву 3 т тринитротолуола, что привело бы к неминуемому разрушению корпуса реактора. В другом случае смесь водорода и кислорода могла проникнуть из реактора наружу и скопилась бы под куполом защитной оболоч­ки. Если бы она взорвалась там, все радиоактивные продукты деления попали бы в атмосферу (что произошло в Чернобыле). Уровень радиации в защитной оболочке достиг к тому времени 30 000 бэр/ч, что в 600 раз превышало смертель­ную дозу. Кроме того, если бы пузырь продолжал увеличиваться, он постепенно вытеснил бы из корпуса реактора всю охлаждающую воду, и тогда температура поднялась бы настолько, что расплавился бы уран (что произошло в Чернобыле). В ночь на 30 марта объем пузыря уменьшился на 20%, а 2 апреля его объем составлял всего лишь 1,4 м3. Чтобы окончательно ликвидировать пузырь и устранить опасность взрыва, техники применили метод так называемой дегазации воды.

Первая крупная ядерная авария в СССР произошла 29 сентября 1957 г. на Южно-Уральском заводе по производству атомного оружия. Это был секретный объект под названием «Челябинск-40». Об этой аварии, которую принято называть уральской ядерной катастрофой, миру поведал эмигрировавший на Запад советский ученый Жорес Медведев, переславший свою рукопись в английский журнал «Нью сайнтист» (4 ноября 1976 г.). Советская сторона долго замалчивала сам факт аварии, но в июне 1989 г., спустя 32 года после аварии, все же опуб­ликовала сообщение об этом событии.

29 сентября 1957 г. в 16 ч 20 мин по московскому времени взорвалась одна из «банок вечного хранения», содержавшая отходы ядерного производства. В этой «банке» - контейнере находился раствор отработанного высокоактивного вещества, общая активность которого составляла 20 млн Ки (1 Ки = 3,700 • 1010 Бк. Один беккерель соответствует одному распаду в секунду для любого радионуклида). Выброс же составил 2 млн Ки, остальные 18 млн Ки осели на землю около контейнера.

Объем «банки хранения» 300 м3. Она представляет собой бетонную емкость, внутренняя поверхность которой изготовлена из нержавеющей стали. Бетонная крышка контейнера толщиной 1 м находилась под землей. В результате взрыва ее подбросило на несколько десятков метров, в земле образовался кратер диаметром 30 м и глубиной 5 м. Радиоактивное облако поднялось на высоту 1000 м.

Исходя из показателей, ученые предположили, что мощность взрыва соответствовала 70 т тринитротолуола.

При взрыве никто не погиб. Непосредственно сразу после аварии, в течение 7-10 дней, из близлежащих населенных пунктов было выселено 600 человек, а в последующие 1,5 года — около 10 тыс. человек. Максимальные средние дозы облучения, полученные до эвакуации, достигали 17 бэр по внешнему облучению и 52 бэра по эффективной эквивалентной дозе.

Взрыв разбросал радиоактивные элементы на территории, протянувшейся на 105 км в длину при ширине «следа» 8-9 км. К счастью, он пришелся на места малонаселенные. Разовые дозы облучения жителей деревень, что попали в зону выброса, были не опасными для здоровья. Но «грязными» стали почва и водоемы, растущие здесь лес и травы. Почти все выпавшие радионуклиды относились к короткоживущим. Среди радионуклидов, обладавших сравнительно продолжительным периодом полураспада, можно назвать цезий (60%), цирконий (25%), рутений (4%), стронций-90 (2,7%). Почти у всех выявленных радионуклидов, кроме стронция (период полураспада 28,8 года), период полураспада составлял от 1 месяца до 1 года, поэтому можно с уверенностью предположить, что в настоящее время в районе катастрофы можно обнаружить лишь стронций-90.

В 1981-1985 гг. на советских атомных станциях произошли 1042 аварийные остановки энергоблоков, в том числе 381 на АЭС с реакторами РБМК. На Чернобыльской АЭС таких случаев было 104, из них 35 — по вине персонала (из протокола заседания Политбюро ЦК КПСС, проходившего 3 июля 1986 г.). Предупреждающий тревожный сигнал звучал — и не единожды!

5. Чернобыльская катастрофа и ее последствия

Чернобыльская АЭС расположена в 18 км от г. Чернобыль и в 150 км от Киева. В 4 км от АЭС расположен город атомщиков Припять, названный так по имени реки, которая несет свои воды в Днепр. По генеральному плану предполагалось, что в Припяти будут жить до 80 тысяч жителей.

Общая численность населения в 30-километровой зоне вокруг АЭС была свыше 100 тыс. чел. (средняя плотность населения — 70 чел./км2). Около 50 тыс. проживало в Припяти, более 12 тыс. — в Чернобыле. Обслуживающий персонал АЭС насчитывал около 6,5 тыс. чел.

К 1986 г. в эксплуатации находилось 4 энергоблока первой и второй очереди. В 1,5 км к юго-востоку от главного корпуса велось строительство двух энергоблоков третьей очереди.

Авария на Чернобыльской АЭС — одна из крупнейших экологических катастроф. Облако, содержащее 30 млн Ки, накрыло территорию, границы которой: на севере — Швеция, на западе — Германия, Польша, Австрия, на юге Греция, Югославия.

Причиной аварии явился ряд допущенных работниками электростанции грубых нарушений правил эксплуатации реакторных установок. Произошло внезапное нарастание мощности реактора, что привело к резкому повышению температуры и давления в его активной зоне и контуре теплоносителя и к последующему взрыву реактора с разрушением реакторного здания. Аварийная защита реактора в этих условиях должна была автоматически сработать от любого их ряда аварийных сигналов и предотвратить нарастание реакции деления ядерного горючего.

Авария произошла 26 апреля 1986 г. в 1 ч 23 мин. В это время на станции работа­ло около 400 человек. С момента катастрофы возникли три важнейшие и требо­вавшие немедленного решения задачи: борьба с пожаром на АЭС, предотвраще­ние развития аварии в активной зоне реактора и определение ее масштабов для принятия практических мер по ликвидации последствий.

Через 5 минут после возникновения аварии в район 4-го блока прибыло дежур­ное подразделение АЭС, затем пожарные расчеты из городов Припять и Черно­быль. Благодаря самоотверженным действиям пожарных уже к 2 ч 10 мин на крыше машинного зала и к 2 ч 30 мин на крыше реакторного отделения основ­ные очаги пожаров были подавлены, а к 5 часам пожар на 4-м энергоблоке был ликвидирован полностью.

Над реактором стоял радиационный ало-сизый столб. Реактор пылал — продолжалась плазменная реакция. Необходимо было измерить уровень радиации — предполагалось, что он от 3,5 до 5 тыс. рентген. Кроме радиации, над реактором была температура 120-180 °С. Уровень радиации замерялся с вертолетов. Вертолет зависал над центром взорванного энергоблока на высоте 200 м, открывался люк, и на стальном тросе в пылающий зев опускался зонд.

Понимая, что такое мощное радиоактивное излучение может «накрыть» пол Европы, правительственная комиссия приняла решение — забросать источник излучения песком, бором, свинцом, чтобы затушить радиационное пламя.

В кабину вертолета грузили по 8-10 мешков с песком, бором и свинцом. Зависнув над реактором и привязав себя страховочными ремнями, борттехник вручную сбрасывал эти мешки. Но это была капля в море. Позже придумали подвешивать их на балочных держателях, как авиабомбы. Продуктивность увеличилась.

В общей сложности разными способами вертолетчики сбросили в реактор около 5 тыс. т разных грузов. Однако реактор продолжал работать. Температура уже поднялась до критической отметки 400 "С. Стали срочно сбрасывать свинец — он погасил температуру. За один день было сброшено около 1500 т свинца.

В начале мая возникла опасность, что раскаленные радиоактивные массы, про­жигая себе путь, опустятся вниз и в конце концов достигнут грунтовых вод, загрязнив их. Для прекращения этих процессов было решено прорыть тоннель под реактор, соорудив теплообменник на бетонной плите с принудительным охлаждением. Шахтеры прокладывали тоннель, а воины-химики обеспечивали контроль радиационной обстановки в месте работ и безопасную смену бригад.

Основная тяжесть ликвидации последствий аварии на АЭС легла на военнослужащих ВС РФ. За весь период работ была дезактивирована территория площадью 140 млн м2. {Дезактивация — это удаление радиоактивных веществ с вооружения, техники, обмундирования, продовольствия, местности и воды.) С учетом неоднократной обработки дезактивировано более 500 населенных пунктов, около 10 тыс. км дорог, локализовано радиоактивное заражение местности на площади 25 тыс. га. Вывезено и захоронено свыше 374 тыс. м3 грунта. Обработано около 650 тыс. единиц техники и свыше 3 млн человек личного состава.

Только за два с половиной года с участием личного состава частей и соединений химических и инженерных войск проведена дезактивация территории АЭС площадью около 5 млн м2 и внутренних помещений площадью более 20 млн м2, вывезено и захоронено около 500 тыс. м3 загрязненного оборудования, строительных конструкций и грунтов. Вырублено и локализовано 115 га «рыжего» леса.

Сложность поставленных перед ликвидаторами задач состояла в том, что опыта ликвидации последствий таких аварий не было, приборы, рассчитанные на дозы облучения военного времени, не позволяли с необходимой точностью проводить измерения, техника подразделений специальной обработки не предназначена для проведения дезактивации местности и помещений в таких масштабах и условиях.

Общая площадь загрязненных в результате аварии на ЧАЭС территорий (уровень радиации более 1 Ки/км2) — 57 000 км2. Данные о площади территорий, пострадавших от Чернобыльской катастрофы, с повышенным уровнем загрязнения Сз137 приведены в табл. 12.4 и 12.5 (по состоянию на 1996 г.).

Уровни загрязнения от 15 до 40 Ки/км2 и более имеются только в Брянской области; от 5 до 15 Ки/км2 — в Брянской, Калужской, Орловской и Тульской областях; от 1 до 5 Ки/км2 — в 19 субъектах Российской Федерации: в 16 областях (Брянской, Белгородской, Воронежской, Калужской, Курской, Ленинградской, Липецкой, Нижегородской, Орловской, Пензенской, Рязанской, Саратовской, Смоленской, Тульской, Тамбовской, Ульяновской) и 3 республиках (Мордовии, Татарстане и Чувашии).

По данным Союза «Чернобыль», только к ликвидации последствий аварии привлекалось 835 тыс. человек. Каждый 10-й из них — инвалид, каждый 25-й ушел из жизни.

Таблица 5. Клинические последствия острого облучения человека

Доза облучения Тип облучения Повреждения

Тотальное Локальное

Не более 25 Все тело - Клинические симптомы не обнаруживаются
  - + Временное снижение количества лимфоцитов
  + - Тошнота, рвота, вялость во всем теле и значительное
      снижение числа лимфоцитов
  - + Смертность 5%, «похмелье» от облучения  
      50% (состояние, похожее на похмелье после
      алкогольного опьянения)
  + - Снижение количества лейкоцитов на долгое
      время
  - + Смертность 50% за 30 суток
  + - Смертность 90% за 14 суток
Не менее 700 - + Смертность 100%

 

От последствий аварии больше всего пострадали ликвидаторы 1986-1987 гг., дети и подростки до 14 лет, те, кто родился незадолго до этой катастрофы или после нее. На детей и подростков особенно пагубно воздействовали короткоживущие радионуклиды йода. Йод, попадая в организм, быстро накапливается в щитовидной железе. Повышенная его концентрация в конце концов приводит к злокачественным образованиям — раку щитовидной железы. Но это выяснилось не сразу: латентный период продолжался около 5 лет. Начиная с 1991 г. наблюдается стремительный рост этого заболевания у детей. В Брянской, Орловской, Тульской и Калужской областях, где проживает более 1 млн детей до 14 лет, зарегистрировано 124 случая рака щитовидной железы, вызванных радиацией.

Чернобыльская АЭС перестала быть источником электроэнергии, но остается источником большой опасности и будет им еще по меньшей мере 100 лет. До сих пор никто не может сказать точно, что происходит внутри «саркофага», которым накрыт 4-й реактор станции. Пока еще не выгружено топливо из 1-го блока ЧАЭС (2001 г.), 2-й — уже освобожден от него. Вывести из эксплуатации остановленный 3-й энергоблок планируется к 2008 г. — все ядерное топливо извлекут из реактора, а радиоактивные отходы надежно захоронят. До этого времени и сама станция, и 3-й энергоблок будут считаться ядерно-опасными объектами.

Последствия Чернобыльской аварии оказались страшными не только для России. Только на Украине за последние 10 лет умерли 4 тыс. ликвидаторов аварии на ЧАЭС. Еще 70 тыс. стали инвалидами. Примерно 7% жителей страны, а это около трех миллионов человек, в той или иной степени испытали на себе влияние Чернобыля, получив различные болезни.

По самым скромным оценкам, экономический ущерб, нанесенный Белоруссии в результате аварии на ЧАЭС, составил 235 млрд долларов, 23% территории государства оказались загрязненными выброшенными из поврежденного реактора радионуклидами. Каждый 5-й житель Белоруссии пострадал от аварии, и, что самое страшное, здоровью более полумиллиона детей был нанесен непоправимый вред.

В чем принципиальное отличие аварии на АЭС от ядерного взрыва? По радионуклидному составу выброшенная из реактора активность была гораздо сложнее, чем состав продуктов мгновенного взрыва атомной бомбы. Выброс радионуклидов из жерла раскаленного реактора продолжался с различной интенсивностью более 10 суток, меняя направление и высоту подъема. В течение всего времени выброса направление ветра в слое от 0 до 1000 м изменилось на 360°. Смена метеоусловий, выпадение осадков привели к пятнистости радиоактивного загрязнения местности. Расположение источников излучения после взрыва на 4-м блоке ЧАЭС либо вообще не поддается описанию, либо может быть описано весьма приблизительно. При ядерном же взрыве, который происходит в считанные доли секунды, границы следа радиоактивного облака изображают в виде эллипса, вытянутого по направлению движения ветра.

Площадь радиоактивного заражения после аварии, по сравнению с площадью после ядерного взрыва, ничтожно мала. Так, площадь с уровнем дозы 1 Р/ч составляла менее 10 км2 (при ядерном взрыве — сотни квадратных километров). Спад радиации после аварии на АЭС идет значительно медленнее, чем после взрыва. На ЧАЭС степень радиоактивного заражения через год (к 1 мая 1987 г.) уменьшилась в 55 раз.

Может ли АЭС выйти из-под контроля и взорваться, как атомная бомба? Нет. Атомные бомбы и реакторы на тепловых нейтронах в корне различны. В атомной бомбе применяется почти абсолютно чистый уран-235 или плутоний-239. Для того чтобы произошел взрыв, отдельные «куски» этих делящихся материалов должны быть быстро соединены для образования критической массы взрыва.

В реакторе же атомной станции используется топливо, содержащее лишь малую часть урана-235. Более того, эта малая доза распределена в большом объеме неделящегося топлива, которое, в свою очередь, распределено по конструкционным элементам реактора. Таким образом, случайное сжатие больших количеств топлива, необходимых для взрыва, принципиально невозможно. Чернобыльская авария произошла в результате развития неуправляемой самоподдерживающейся цепной ядерной реакции, однако скорость выделения энергии и ее масштаб принципиально не соответствовали параметрам ядерного взрыва.

После аварии на ЧАЭС был принят и внедрен в практику целый комплекс мер по повышению безопасности энергетических реакторов РБМК, в частности, модернизированы системы управления и защиты (СУЗ). Раньше для погружения в активную зону стержней, гасящих нейтронный поток, требовалось 18 с, сейчас — 12 с. Введена дополнительная быстродействующая система аварийной защиты, время срабатывания которой составляет 2 с. Естественно, эти операции возложены на автоматику, причем системы ее многократно дублированы. Ужесточен контроль состояния трубопроводов наиболее важных систем АЭС. Намного чаще, чем раньше, контролируется состояние металла, из которого они изготовлены. Проведение разного рода не регламентных испытаний энергоблоков (а именно это послужило причиной аварии на ЧАЭС) строжайше запрещено. Штатные испытания, связанные с изменением мощности реактора или его остановкой, проводятся только в присутствии главного инженера станции и инспектора Госпрома-томнадзора России.

Глобальная Выброс в окружающую среду большого Чернобыль,
аварии количества радиоактивных продуктов, накопленных в активной зоне, в результате которого будут повышены дозовые пределы для запроектных аварий. Возможность острых лучевых поражений. Последующее влияние на здоровье населения, проживающего на большой территории, включающей более чем одну страну. Длительное воздействие на окружающую среду

Тяжелая авария Выброс в окружающую среду большого количества радиоактивных продуктов, накопленных в активной зоне, в результате которого Великобритания дозовые пределы для проектных аварий, 1957 г. будут превышены, а для запроектных — нет. Для ослабления серьезного влияния на здоровье населения необходимо введение планов мероприятий по защите персонала и населения в случае аварий в радиусе 25 км, включающих эвакуацию населения

Авария с риском для окружающей среды

Выброс в окружающую среду такого количества продуктов, которое приводит к незначительному превышению дозовых пределов 1979 г. для проектных аварий. Разрушение большей части активной зоны, вызванное механиче­ским воздействием или плавлением. В некоторых случаях требуется частичное введение планов мероприятий по защите персонала и населения на случай аварии

Авария в пределах АЭС Выброс радиоактивных продуктов в окружающую среду в количествах, не превышающих дозовые пределы для населения 1980 г.
при проектных авариях. Облучение работающих порядка 1 Зв, вызывающее лучевые
эффекты

6. Действия населения при аварии на атомных электростанциях

Причины и последствия Чернобыльской трагедии хорошо изучены специалистами. Поэтому на сегодняшний день наиболее точно можно спрогнозировать последствия аварии с реакторами таких же типа и мощности, как на Чернобыльской АЭС. На территории России такие реакторы стоят на Ленинградской АЭС (4 РБМК по 1000 МВт каждый), Смоленской (3 РБМК по 1000 МВт), Курской (4 РБМК по 1000 МВт).

В результате возможной аварии с разрушением ядерного реактора радиоактивные вещества в виде паровоздушной смеси выбрасываются на высоту до 3 км в течение нескольких суток. Облако выброса будет распространяться от АЭС по направлению ветра.

В момент прохождения облака выброса и после него в результате радиоактивного загрязнения воздуха и местности люди будут подвергаться внешнему и внутреннему облучению в случаях попадания радиоактивных частиц с вдыхаемым воздухом, а также при употреблении загрязненных пищи и воды.

За время прохождения облака люди, находящиеся на открытой местности, могут получить дозы внешнего облучения в пределах нескольких рентген. Доза внутреннего облучения щитовидной железы за счет присутствия радиоактивного йода в облаке выброса при допустимой дозе 30 бэр может достигать:

□ для детей — от 50 до 300 бэр;

□ для взрослых — от 15 до 100 бэр.

Поэтому очень важно своевременное проведение йодной профилактики. С 1976 г. в СССР действовали Нормы радиационной безопасности (НРБ-76). После Чернобыльской катастрофы они были уточнены, дополнены и получили наименование НРБ-76/87, но со временем утратили свое значение. Требовалось коренным образом пересмотреть радиационную безопасность населения, ужесточив правила защиты людей от различного рода ионизирующих излучений (ИИ).

9 января 1996 г. Президент РФ подписал федеральный закон № 3-ФЗ «О радиационной безопасности населения». В нем приведены основные определения некоторых терминов и установлено государственное нормирование в области обеспечения радиационной безопасности.

Законом устанавливаются следующие основные гигиенические нормативы (допустимые пределы доз) облучения в результате использования источников ИИ:

□ для населения средняя годовая эффективная доза равна 0,001 Зв, за период жизни (70 лет) — 0,07 Зв;

□ для работников средняя годовая эффективная доза равна 0,02 Зв, за период трудовой деятельности (50 лет) — 1 Зв. Допустима годовая эффективная доза облучение до 0,05 Зв, но при условии, что она, исчисленная за пять последовательных лет, не превысит 0,02 Зв.

Эти нормативы введены в действие с 1 января 2000 г. На основе этого закона были разработаны и постановлением Госкомсанэпиднадзора РФ от 19 апреля 1996 г. № 7 введены в действие новые Нормы радиационной безопасности — НРБ-96, затем они были уточнены и вступили в действие под названием НРБ-99.

В новых Нормах радиационной безопасности изменена классификация облучаемых лиц, они разделены на две категории (табл. 9):

□ персонал — лица, работающие с ИИ (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б);

□ население, не занятое в сферах производства и обслуживания.

Таблица 9. Дозовые пределы за год, мЗв

 
Нормируемая величина Персонал Остальное население
  Группа А Группа Б
Эффективная доза   12,5 5

При аварии на АЭС система водоснабжения в результате радиоактивного заражения воды выйдет из строя на 70%. (Однако, по опыту аварии на ЧАЭС, в источниках питьевой воды населенных пунктов Киевской области — колодцах и артезианских скважинах — в течение мая — июня 1986 г. радиоактивное загрязнение практически не отмечалось. Лишь в некоторых открытых колодцах определялись йод-131 и другие радионуклиды.) Авария на АЭС практически не окажет влияния на состояние транспортных магистралей, систем электро-, газо- и теплоснабжения, канализации, систем управления, оповещения и связи.

В случае аварии на АЭС с одним из энергоблоков, подобно Чернобыльской, спад уровней радиации будет составлять:

□ за 1-е сутки — в 2 раза;

□ за 30 суток — в 5 раз;

□ за 6 месяцев — в 40 раз;

□ за год — в 85 раз.

Радиоактивные вещества проникают в организм человека главным образом через желудочно-кишечный тракт и в меньшей степени — через органы дыхания, так как эти вещества относительно быстро оседают на поверхность земли, а зараженные продукты и вода используются длительное время. Чтобы избежать заражения, необходимо принять меры, предотвращающие поступление в организм радиоактивных веществ с продовольствием и водой. Запасы продовольствия и воды следует хранить в пыле- и водонепроницаемых емкостях. Хотя внешняя поверхность таких емкостей может оказаться зараженной радиоактивными веществами, все же большую их часть можно удалить перед открыванием емкостей путем смывания.

Если запасы продовольствия оказались зараженными и возникла необходимость потребления зараженных продуктов, их необходимо подвергнуть дезактивации. Например, достаточно обмыть многие свежие фрукты и овощи или снять с них кожуру. Плохо дезактивирующиеся продукты, имеющие пористую поверхность, подлежат уничтожению. Молоко находящихся в зараженной зоне коров из-за наличия в нем радиоактивного йода, возможно, окажется непригодным для употребления в пищу, так как молоко может оставаться радиоактивным в течение нескольких недель.

При заражении водоемов радиоактивные вещества могут поступать в организм человека по биологическим цепочкам «вода — водоросли», «планктон — рыба — человек» или, если водоем служит для питьевого водоснабжения, непосредственно по цепочке «вода — человек». На водопроводных станциях питьевая вода, забираемая из наземных источников, может быть очищена от радиоактивных веществ осаждением коллоидных частиц с последующей фильтрацией. Питьевая вода, получаемая из подземных скважин либо хранящаяся в герметических ем­костях, обычно не заражена радиоактивными веществами.

Среди мероприятий по сокращению поступления радиоактивных веществ в организм человека важное место отводится использованию средств защиты орга­нов дыхания. Для этой цели в первую очередь применяются респираторы различных типов (Р-2, «Лепесток» и др.). При отсутствии респираторов могут быть использованы все типы фильтрующих противогазов и простейшие средства защиты органов дыхания, такие как противопыльная тканевая маска ПТМ-1, ватно-марлевая повязка (ВМП) и др.

Кожа человека может подвергаться заражению в результате попадания на нее радиоактивных веществ, поэтому пребывание людей в период выпадения радиоактивных веществ в защитных сооружениях или в жилых и производственных зданиях может исключить либо существенно ограничить заражение кожных по­кровов. По окончании выпадения радиоактивных веществ надо, по возможности, избегать появления на улице в сухую ветреную погоду, хотя заражение кожных покровов людей в результате вторичного пылеобразования менее опасно, чем при первичном заражении местности.

Кожные покровы могут быть также защищены обычной одеждой, приспособленной для этого соответствующим образом. Чтобы обеспечить герметичность, например, по нагрудному разрезу куртки, применяют нагрудный клапан, изготовленный из любой плотной ткани. Для защиты шеи, открытых частей головы и создания герметичности в области воротника используют капюшон из плотной хлопчатобумажной или шерстяной ткани. Можно использовать также обычные платки, куски ткани и т. д. Следует по возможности герметизировать места соединения куртки с брюками, рукавов с перчатками, нижнего края брюк с обувью.

Дезактивировать кожу нужно, смывая с нее радиоактивные вещества. В качестве дезактивирующих растворов можно применять воду, а также водные растворы моющих средств. Если радиоактивная пыль попала в рот, нос и уши, их промывают водой или водным раствором марганцовки, при этом радиоактивные вещества удаляются почти полностью. Если радиоактивная пыль попала в рану, ее необходимо несколько раз промыть и по возможности вызвать кровотечение под струей воды, что будет способствовать наиболее полной дезактивации.

 

 

<== предыдущая лекция | следующая лекция ==>
LКонвенция вступила в силу для СССР 15 сентября 1990г | ЛЕКЦИЯ №5 часть 2
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 619; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.14 сек.