Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Принцип действия фоторезисторов

Фоторезисторы

Фоторезистор – это полупроводниковый резистор, сопротивление которого изменяется в зависимости от поглощаемого светового потока, т.е. это полупроводниковый резистор, действие которого основано на фоторезистивном эффекте.

Фотопроводимость – это свойство полупроводника изменять свою электропроводность под воздействием электромагнитного излучения. Причина фотопроводимости – увеличение концентрации носителей заряда – электронов в зоне проводимости и дырок в валентной зоне. Вследствие этого проводимость полупроводника возрастает на величину

Ds = q (m n Dn i + m p D pi),

где q – заряд электрона; m n – подвижность электронов; m p – подвижность дырок; D ni – концентрация генерируемых электронов; D pi – концентрация генерируемых дырок.

Поскольку основным следствием поглощения энергии света в полупроводнике является перевод электронов из валентной зоны в зону проводимости, то энергия кванта света фотона должна удовлетворять условию:

h n кр ³ D W З или h n кр ³ D W ПР

где h – постоянная Планка; n кр – критическая частота электромагнитного излучения (красная граница фотопроводимости), D W З.– ширина запрещенной зоны, D W ПР – энергия ионизации примеси.

Излучение с частотой n < nкр не может вызвать фотопроводимость, так как энергия кванта такого излучения hn < D W З недостаточна для перевода электрона из валентной зоны в зону проводимости. Если же hn > D W З, то избыточная относительно ширины запрещенной зоны часть энергии квантов передается электронам в виде кинетической энергии.

Критической частоте n кр соответствует граничная длина волны l гр:

l гр = с / nкр,

где с - скорость света.

При длинах волн, больших граничной, фотопроводимость резко падает. Так, для германия граничная длина волны составляет примерно 1,8 мкм. Однако спад фотопроводимости наблюдается и в области малых длин волн. Это объясняется быстрым увеличением поглощения энергии с частотой и уменьшением глубины проникновения падающей на полупроводник электромагнитной энергии. Поглощение происходит в тонком поверхностном слое, где и образуется основное количество носителей заряда. Появление большого количества избыточных носителей только у поверхности слабо отражается на проводимости всего объема полупроводника, так как скорость поверхностной рекомбинации больше объемной и проникающие вглубь не основные носители заряда увеличивают скорость рекомбинации в объеме полупроводника.

Фотопроводимость полупроводников может обнаруживаться в инфракрасной, видимой или ультрафиолетовой частях электромагнитного спектра в зависимости от ширины запрещенной зоны, которая, в свою очередь, зависит от типа полупроводника, температуры, концентрации примесей и напряженности электрического поля.

Рассмотренный механизм поглощения света, приводящий к появлению свободных носителей заряда в полупроводнике, называют фото активным. Поскольку при этом изменяется проводимость, а следовательно, внутреннее сопротивление полупроводника, указанное явление и было названо фоторезистивным эффектом.

При облучении фоторезистора фотонами в полупроводниковом фоточувствительном слое возникает избыточная концентрация носителей заряда. Если к фоторезистору приложено напряжение, то через него будет проходить дополнительная составляющая тока – фототок, обусловленный избыточной концентрацией носителей. Электронная составляющая фототока

где a - толщина полупроводникового фоточувствительного слоя; b – его ширина; l – расстояние между электродами; R – коэффициент отражения; α – показатель поглощения; η – квантовая эффективность генерации; N ф – число фотонов, падающих на единичную поверхность фоточувствительного слоя за единицу времени.

Фототок соответствует прохождению через фоторезистор и через внешнюю цепь I фn / q электронов. Число электронов, возникающих в объеме фоточувствительного слоя из-за поглощения фотонов, равно .

Отношение числа прошедших во внешней цепи электронов к числу возникших в фоточувствительном слое электронов называют коэффициентом усиления фоторезистора:

Произведение подвижности электронов на напряженность электрического поля есть скорость дрейфа электронов, которую можно также представить как расстояние между электродами, деленное на время пролета носителей между электродами t прол. Поэтому коэффициент усиления фоторезистора можно выразить и в таком виде: KI = τn/t прол.

Если в полупроводниковом фоточувствительном слое есть примеси, являющиеся ловушками захвата для неосновных носителей заряда (сенсибилизирующие примеси), то захват неосновных носителей этими ловушками может существенно (на несколько порядков) увеличить эффективное время жизни неравновесных основных носителей. В этом случае время жизни может значительно превышать время пролета носителей между электродами. Когда один из электродов достигает положительного электрода, другой электрон входит в полупроводниковый слой из отрицательного электрода для сохранения электрической нейтральности объема полупроводника, в котором осталась нескомпенсированная положительно заряженная ловушка захвата. Таким образом, поглощение одного фотона может случить причиной прохождения через фоторезистор многих электронов.

Введение сенсибилизирующих примесей, приводя к увеличению эффективного времени жизни основных носителей, вызывает снижение быстродействия фоторезистора.

Усиление фототока может происходить и при наличии потенциальных барьеров, например, на поверхности кристаллов полупроводника, если фоторезистор изготовлен на основе поликристаллического полупроводникового материала. Потенциальные барьеры могут являться потенциальными ямами для неосновных носителей заряда. В этом случае будет происходить усиление фототока в фоторезисторе по аналогии с усилением фототока в фототранзисторе

<== предыдущая лекция | следующая лекция ==>
Область применения. Разновидности и маркировка терморезисторов | Параметры и характеристики фоторезисторов
Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 1225; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.015 сек.