Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Несобственные интегралы от неограниченных функций. Пусть функция непрерывна на конечном промежутке , но не ограничена на этом промежутке




Пусть функция непрерывна на конечном промежутке , но не ограничена на этом промежутке.

Определение. Несобственным интегралом от функции у=f(x) на промежутке называется предел , т.е.

 

. (15)

 

Если предел, стоящий в правой части равенства (15) существует и конечен, то несобственный интеграл называется сходящимся, в противном случае – расходящимся.

Интеграл (15) иногда называют несобственным интегралом второго рода.

Аналогично вводится понятие несобственного интеграла от функции непрерывной, но не ограниченной на промежутке :

 

. (16)


Если функция не ограничена при , где , и непрерывна при и , то несобственный интеграл от функции у=f(x) на отрезке обозначается и определяется равенством

 

. (17)

Несобственный интеграл (17) называется сходящимся, если сходятся оба несобственных интеграла в правой части равенства (17).
В противном случае данный интеграл называется расходящимся.

Пример 17. Исследовать на сходимость несобственные интегралы:

а) ; б) .

 

Решение: а) данный интеграл является интегралом от неограниченной функции (подынтегральная функция не определена в точке , при эта функция неограниченно возрастает).

По определению имеем

[замена: ] = , следовательно, данный интеграл сходится.

б) по определению

 



.

Значит, данный интеграл является расходящимся.

 




Поделиться с друзьями:


Дата добавления: 2014-01-20; Просмотров: 359; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.