Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Автомобильные и авиационные бензины. Детонационная стойкость (физико-химическая сущность процесса, пути повышения стойкости, методы определения). Химическая стабильность бензинов

 

Требования к детонационной стойкости бензинов зависят от конструктивных особенностей двигателя, определяющими среди которых являются степень сжатия и диаметр цилиндра. Так как увеличение степени сжатия позволяет повысить эксплуатационные показатели и экономичность работы двигателя, оно является определяющим в раз­витии автомобилестроения. Таким образом, прогресс в автомобилестро­ении приводит к постоянному повышению требований к детонационной стойкости применяемых бензинов.

Этот показатель характеризует способ­ность автомобильных и авиационных бензинов противостоять самовос­пламенению при сжатии. Высокая детонационная стойкость топлив обеспечивает их нормальное сгорание на всех режимах эксплуатации двигателя. Процесс горения топлива в двигателе носит радикальный характер. При сжатии рабочей смеси температура и давление повышаются и начинается окисление углеводородов, которое интенсифицируется после воспламенения смеси. Если углеводороды несгоревшей части топлива обладают недостаточной стойкостью к окислению, начинается интенсивное накапливание перекисных соединений, а затем их взрывной распад. При высокой концентрации перекисных соединений происходит тепловой взрыв; который вызывает самовоспламенение топлива. Самовоспламенение части рабочей смеси перед фронтом пламени приводит к взрывному горению оставшейся части топлива, к так называемому детонационному сгоранию. Детонация вызывает перегрев, повышенный износ или даже местные разрушения двигателя и сопровождается резким характерным звуком, падением мощности, увеличением дымности выхлопа. На возникновение детонации оказывает влияние состав применяемого бензина и конструктивные особенности двигателя.

Показателем детонационной стойкости автомобильных и авиационных бензинов является октановое число, показывающее содержание изооктана (в % объемных) в смеси с н-гептаном, которая по детонационной стойкости эквивалентна топливу, испытуемому в стандартных условиях. В лабораторных условиях октановое число автомобильных и авиационных бензинов и их компонентов определяют на одноцилиндровых моторных установках УИТ-85 или УИТ-65. Склонность исследуемого топлива к детонации оценивается сравнением его с эталонным топливом, детонационная стойкость которого известна. Октановое число на установках определяется двумя методами: моторным (по ГОСТ 511-82) и исследовательским (по ГОСТ 8226-82).

Методы отличаются условиями проведения испытаний. Испытания по моторному методу проводят при более напряженном режиме работы одноцилиндровой установки, чем по исследовательскому. Поэтому октановое число, определенное моторным методом, обычно ниже октанового числа, определенного исследовательским методом. Октановое число, полученное моторным методом в большей степени характеризует детонационную стойкость топлива при эксплуатации автомобиля в условиях повышенного теплового форсированного режима, октановое число, полученное исследовательским методом, больше характеризует бензин при работе на частичных нагрузках в условиях городской езды. Разницу между октановыми числами бензина, определенными двумя методами, называют чувствительностью бензина. Наибольшей чувствительностью (9-12 ед.) отличаются бензины каталитического крекинга и каталитического риформинга, содержащие непредельные и ароматические углеводороды. Менее чувствительны (1-2 ед.) к режиму работы двигателя алкилбензин и прямогонные бензины, состоящие из парафиновых и изопарафиновых углеводородов. Для авиационных бензинов нормируется октановое число, определенное только моторным методом, для автомобильных бензинов, за исключением А-76, опреде­ляются и нормируются октановые числа, определенные двумя методами.

Важным показателем детонационной стойкости авиационных бензинов является сортность на богатой смеси, которую определяют при испытании на стандартной одноцилиндровой моторной установке ИТ9-1 (ГОСТ 3338—68). Сортность топлива численно равна сортности такого эталонного топлива, которое при испытании на одноцилиндровом двигателе в стандартных условиях на режиме начальной детонации имеет одинаковое с испытуемым топливом значение среднего индикаторного давления. Чем выше сортность топлива, тем выше его детонационная стойкость на богатой смеси в условиях работы авиационного двигателя. При маркировке авиационных бензинов в числителе дроби указывается октановое число по моторному методу, а в знаменателе — сортность на богатой смеси.

Детонационная стойкость автомобильных и авиационных бензинов определяется их углеводородным составом. Наибольшей детонационной стойкостью обладают ароматические углеводороды. Самая низкая детонационная стойкость у парафиновых углеводородов нормального строения, причем она уменьшается с увеличением их молекулярной массы. Изопарафины и олефиновые углеводороды обладают более высокими антидетонационными свойствами по сравнению с нормаль­ными парафинами. Увеличение степени разветвленности и снижение молекулярной массы повышает их детонационную стойкость. По детона­ционной стойкости нафтены превосходят парафиновые углеводороды, также ароматические углеводороды с двойной связью в боковой цепи. Наиболее устойчивы к окислению парафиновые углеводороды нормального строения и ароматические углеводороды. Причем реакционноспособные олефиновые или алкенароматические углеводороды могут инициировать процесс окисления химически стабильных углеводородов.

Химическая стабильность автомобильных бензинов определяется в основном их углеводородным составом. Содержащиеся в бензинах неуглеводородные компоненты также влияют на их химическую стабильность. Наибольшей склонностью к окислению обладают бензины термического крекинга, коксования, пиролиза, каталитического крекинга, которые в значительных коли­чествах содержат олефиновые и диолефиновые углеводороды. Бензины каталитического риформинга, прямогонные бензины, алкилбензин химически стабильны.

Химическую стабильность товарных бензинов и их компонентов оценивают стандартными методами путем ускоренного окисления при температуре 100 °С и давлении кислорода по ГОСТ 4039—88. Этим методом определяют индукционный период, т.е. время от начала испыта­ния до начала процесса окисления бензина. Чем выше индукционный период, тем выше стойкость бензина к окислению при длительном хранении. По индукционным периодам бензины различных технологи­ческих процессов существенно различаются. Индукционные периоды бензинов термического крекинга составляют 50—250 мин; каталити­ческого крекинга — 240—1000 мин; прямой перегонки — более 1200 мин; каталитического риформинга — более 1500 мин.

Установлено, что бензины, характеризующиеся индукционным периодом не менее 900 мин, могут сохранять свои свойства в течение гарантийного срока хранения (5 лет). Так как не все бензины предназначены для длительного хранения, в нормативно-технической документации нормы на индукционный период установлены от 360 до 1200 мин.

Склонность бензинов к окислению в двигателе в большей степени характеризует показатель «сумма продуктов окисления», определяемый окислением бензина в герметичной бомбе при 110 0С в течение 6 ч (ГОСТ 22054-76). Этот метод используется в основном для исследова­тельских целей и при квалификационных испытаниях.

Химическая стабильность бензинов в определенной степени может быть охарактеризована йодным числом, которое является показателем наличия в бензине непредельных углеводородов. Йодное число нормируется для авиационных бензинов, так как вовлечение в их состав нестабильных бензинов недопустимо.

Химическая стабильность этилированных бензинов зависит также от содержания в них этиловой жидкости, так как тетраэтилсвинец при хранении подвергается окислению с образованием нерастворимого осадка. Авиационные бензины практически не содержат непредельных углеводородов, но содержание в них тетраэтилсвинца значительно выше, чем в автомобильных бензинах. Поэтому их химическая стабильность 5 характеризуется периодом стабильности (ГОСТ 6667—75) и определяется в основном наличием тетраэтилсвинца..

Для обеспечения требуемого уровня химической стабильности в автомобильные бензины, содержащие нестабильные компоненты, разрешается добавлять антиокислительные присадки Агидол-1 или Агидол-12. В авиационные бензины введение антиокислителя обяза­тельно для стабилизации ТЭС.

<== предыдущая лекция | следующая лекция ==>
Склонность к образованию отложений и нагарообразованию | Ассортимент, качество и состав автомобильных бензинов
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1745; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.