Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные идеи количественной и порядковой теорий натурального числа

Этапы исторического развития числа

Из истории развития количественных представлений

1 этап. Сравнение групп предметов по количеству с помощью установления взаимнооднозначного соответствия между элементами множеств (1 шкура - 1 горшок).

2 этап. Использование множеств-посредников для сравнения по количеству (зарубки на палке о количестве в прошлом году).

3 этап. Использование универсальных множеств для обозначения кол-ва (1 луна; 5 пальцев на руке: луна оленей; рука оленей).

4 этап. Возникновение числительных и нумерации, абстрагирование числа от конкретного множества.

5 этап. Становление теорий числа: количественной и порядковой.

Количественная теория.

Г. Кантор, XIX в. Основные понятия – множество, взаимнооднозначное соответствие.

В том случае, если каждому элементу множества Х соответствует единственный элемент из множества У, то говорят, что между этими множествами установлено взаимнооднозначное соответствие.

   
Х У

       
   
 
 

 


Рассмотрим 2 бесконечных множества:

(1) множество натуральных чисел 1, 2, 3, 4, 5,…n, …

(2) множество четных натур. чисел 2, 4, 6,…2n, …(подмножество (1));

Так как ряд четных чисел можно пронумеровать с помощью натуральных чисел, то между этими двумя множествами можно установить взаимнооднозначное соответствие. Если между множеством и его некоторым подмножеством нельзя установить взаимнооднозначное соответствие, то множество является конечным.

Если между двумя конечными множествами можно установить взаимнооднозначное соответствие, то эти множества называются равночисленными.

Отношение «быть равночисленными» на множестве всех множеств является рефлексивным, симметричным, транзитивным, а значит, является отношением эквивалентности. Поэтому отношение «быть равночисленным» разбивает множество всех множеств на классы. В эти классы попадут самые различные множества. Общее между ними – одинаковое количество элементов (в класс «5» - 5 цветов, 5 пальцев).

Натуральным числом называют общее свойство класса не пустых, конечных, равночисленных множеств.

Покажем, как операции над числами определяются через операции над множествами.

Обозначим через n(А) количество элементов в множестве А.

Введем операцию сложения над числами через операцию объединения над множествами.

Суммой чисел a и b называется количество элементов в объединении множеств А и В, которое равно

а + b = n(АÈВ) = n(А) + n(В), при условии, что АÇВ = Æ.

Порядковая теория натурального числа.

Джузеппе Пеано, XIX в. Основные понятия: единица (е), операции: непосредственно следовать за, сложение, умножение.

В основе теории – аксиомы Пеано, которые являются свойствами натурального ряда чисел.

1 аксиома. Единица непосредственно не идет ни за каким натуральным числом.

2 аксиома. Любое натуральное число непосредственно следует не более, чем за одним натуральным числом.

3 аксиома. Если к натуральному числу х добавить 1, то получим непосредственно следующее натуральное число х`, т.е. х + 1= х`.

4 аксиома. С помощью добавления единицы к натуральному числу можно получить весь ряд натуральных чисел.

5 аксиома. Если натуральное число х умножить на 1, то получим само натур. число, т.е. х∙1 = х.

х + у` = х + (у + 1) = (х + у) + 1 = (х + у)`

Мы видим, что в количественной теории понятие числа определяется через множество, а операции над числами - через операции над множествами. В порядковой теории дан принцип образования каждого числа, понятие числа определяется через систему аксиом.

Познание ребенком понятия числа происходит одновременно в рамках количественной и порядковой теорий.

<== предыдущая лекция | следующая лекция ==>
Формирования элементарных математических представлений | Системы счисления. Нумерация - графическое изображение числа
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 3144; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.