Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Очистка топочных газов от диоксида серы




 

Уменьшение содержания серы в топочных газах может достигаться разными методами: использованием малосернистых углей, предварительным удалением серы из угля, снижением количества серы, выделяющейся в газовую фазу при горении (связывание серы, например, в сульфат кальция), удалением серы из топочных газов, предварительной переработкой нефти, угля, сланца в жидкое или газообразное горючее (с удалением серы). Поскольку наиболее широко в мировой практике применяются методы обессеривания топочных газов и предварительное удаление серы из нефти и угля, этим методам и уделяется основное внимание. Удаление серы при переработке нефти является стандартной операцией.

Предварительное удаление серы из угля может осуществляться физическими, химическими и микробиологическими методами. Физическими методами (гравитационные и магнитные) удаляется пиритная сера — не более 50 % от общего ее содержания. Микробиологические методы широкого распространения не получили, так как для проведения процесса требуется продолжительное время (несколько дней).

Основными промышленными методами очистки топочных газов от диоксида серы являются абсорбция и добавление сорбентов в зону горения. С помощью этих методов из топочных газов можно удалять более 90 % SO2.

Обычно применяются абсорбционные методы — известковый и известняковый, мокрые, полусухие и сухие. Наиболее широко эти методы распространены в США, Японии и ФРГ. Основные их недостатки — образование большого объема сульфитов и сульфатов и сложность утилизации последних.

Известны также циклические (регенерационные) методы, например магнезитовый, применение которых позволяет получать концентрированный поток SO2 и возвращать сорбент в начало процесса. Однако эти методы имеют свои недостатки и используются значительно реже.

Применяется также подача известняка в зону горения, в кипящий слой или подача пульпы (известняка и воды) в газовый тракт. Но проблема та же: использование золы и шлака ограничено из-за вторичного загрязнения воды и почвы сульфатами.

Помимо малой концентрации SО2 в дымовых газах ТЭС (обычно 1000-3000 мг/м3), сложность улавливания соединений серы и переработки шлама связаны с присутствием в газовом потоке частиц летучей золы, аэрозолей, фторида и хлорида водорода, бензпирена и некоторых других веществ. Наиболее широкое распространение в мировой практике получили известковый и известняковый методы в связи с доступностью и дешевизной реагентов (на ТЭЦ г. Губкин освоен мокрый известняковый способ).

Известковый и известняковый методы. Основные химические реакции, протекающие при взаимодействии SО2 с пульпой гидроксида кальция или известняка, описываются следующими уравнениями:

СаО + Н2О → Са(ОН)2

Са(ОН)2 + СО2 → СаСО3 + Н2О

СаСО3 + СО2 + Н2О → Са(НСО3)2

Са(НСО3)2 + SО2 + Н2О → CaSO3 ∙2 Н2О + 2 СО2

CaSО3∙2 Н2О + 0,5 О2 → CaSO4∙2 Н2О

Образующийся в процессе улавливания SO2 сульфит кальция плохо растворим в воде (0,136 г/л) и образует мелкокристаллический осадок CaSО3 ∙2H2O. Под действием кислорода воздуха он частично переходит в сульфат кальция. При абсорбционном выделение SO2 происходит также очистка газа от частиц летучей золы и других веществ. Поэтому образующаяся пульпа имеет сложный переменный состав и содержит смесь сульфита и сульфата кальция, непрореагировавшего СаСО3 или Са(ОН)2, частиц летучей золы и других веществ. Это в значительной мере затрудняет дальнейшее использование образующегося шлама. В большинстве случаев его сбрасывают в отвал, где он является источником вторичного загрязнения окружающей среды.

Разработаны и освоены в промышленности методы очистки дымовых газов от SO2 с получением строительного гипса. Окисление сульфита кальция и кристаллизация гипса протекают при подкислении, поэтому предусмотрены подача серной кислоты и продувка воздухом.

Интерес представляет разрабатываемый в последние годы так называемый мокро-сухой метод очистки дымовых газов от диоксида серы. В этом случае в газовый поток впрыскивается пульпа извести или известняка. Диоксид серы реагирует с Са(ОН)2 или СаСО3, как было описано выше, вода испаряется, а образовавшиеся твердые частицы CaSO3∙2Н2О и CaSO4∙2H2O улавливаются вместе с летучей золой в электрофильтрах на стадии пылеочистки. Основными достоинствами метода являются сравнительная простота, возможность внедрения на действующем оборудовании, низкие капитальные и эксплуатационные затраты. Однако в этом случае, как и в рассмотренных ранее, использование золы и ее захоронение сопряжены с серьёзными затруднениями.

Магнезитовый метод. Сущность метода состоит во взаимодействии SO2 с суспензией Mg(OH)2 по реакции

Mg(OH)2 + SO2 + 5 Н2О → MgSO3∙6 H2O.

Кристаллический сульфит магния подвергают сушке и обжигу, получая при этом концентрированный поток SO2 и MgO. Оксид магния возвращается в цикл, a SO2 направляется на переработку (например, на получение серной кислоты по стандартной технологии). Часть сульфита магния под действием кислорода воздуха окисляется до сульфата

MgSO3 + 0,5 О2 → MgSО4.

Разложение сульфита магния проводят при температуре 800–900 оС, однако при этих температурах образующийся сульфат магния не разлагается и накапливается. Для его разложения необходимы специальные условия и добавление кокса.

Достоинствами метода являются его цикличность, высокая эффективность (степень очистки 90-92 %), возможность утилизации SO2. Основной недостаток процесса — большое количество твердофазных стадий, что приводит к сильному абразивному износу аппаратуры и загрязнению среды твердыми частицами. Весьма значительными являются и энергетические расходы на разложение сульфита и сульфата магния.

Аммиачные методы. В основе этих методов лежит процесс абсорбции SO2 раствором сульфита аммония

SO2 + (NH4)2SO3 + H2О ↔ 2NH4НSO3.

В дальнейшем в результате химических превращений из образующегося гидросульфита аммония выделяют оборотный раствор (NH4)2SO3 и концентрированный поток SO2. По способу регенерации абсорбционного раствора методы выделения SО2 из дымовых газов подразделяют на кислотный, циклический и автоклавный.

Аммиачно-кислотные методы заключаются в обработке бисульфита аммония серной, азотной и фосфорной кислотами (реакция с азотной кислотой проверена при очистке газов на Молдавской ГРЭС).

2 NH4HSO3 + H2SO4 → (NH4)2SO4 + 2H2O + 2SO2,

4HSO3 + HNO3 → NH4NO3 + H2O + SO2,

3NН4HSO3 + H3PO4 → (NH4)34 + 3H2О + 3SО2.

В основе аммиачно-циклического метода (осуществлённого на Дорогобужской ТЭС) выделения SO2 из отходящих газов лежит процесс поглощения SO2 раствором сульфита аммония

2 +(NH4)2SO3 + H2 О ↔ 2 NH4HSO3.

При нагревание полученного раствора бисульфит аммония разлагается с образованием сульфита аммония и диоксида серы. Выделившийся SО2 после сушки является товарным продуктом, а раствор сульфита аммония возвращается на стадию абсорбции.

Недостатками метода являются большие энергетические затраты, коррозионная активность абсорбционного раствора, высокие капитальные и эксплуатационные затраты.

При аммиачно-автоклавном методе очистка отходящих газов от SO2 проводится раствором сульфит-бисульфита аммония. По достижении определенной концентрации солей в растворе последний направляется на стадию разложения. В отличие от аммиачно-кислотного метода в этом случае проводится нагревание в автоклаве до 140-150 оС, при этом происходит разложение солей аммония с образованием серы

2Nа4HSO3 + (NH4)2SO3 → 2(NH4)2SO4 + S + Н2О.

Получаемые сульфат аммония и сера являются товарными продуктами.

Недостатком всех аммиачных методов очистки отходящих газов ТЭС и ряда других производств является необходимость глубокого охлаждения газов перед стадией абсорбции.

Общий недостаток всех абсорбционных методов — необходимость дополнительного нагрева очищенных газов перед их выбросом в атмосферу. Это связано с тем, что несмотря на высокую эффективность методов (до 98 %), концентрация SО2 в очищенных газах превышает ПДК. Для ее снижения в приземном слое до необходимых норм требуется выброс через высокие трубы, а для создания подъемной силы и интенсивного рассеивания в атмосфере температура газового потока должна быть не ниже 110-150 оС. В ходе же абсорбционной очистки температура снижается до 30-50 оС, поэтому необходим дополнительный нагрев очищенных газов, на что тратится до 3 % топлива.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 2591; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.