Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Опыты, подтверждающие волновые свойства частиц

Волны де Бройля.

Успешно объясняя спектры атома водорода, теория Бора оказалась не в состоянии объяснить спектры многоэлектронных атомов, так как она была внутренне противоречива.

В 1927 г. Луи де Бройль высказал предположение, что не только электромагнитное излучение, но и частицы материи с массой покоя m0 ≠ 0, движущие со скоростью , обладаюткорпускулярно-волновым дуализмом. Длина волны, соответствующая движущей частице, рассчитывается по формуле

 

(8.8)

где р – импульс частицы. Это предположение в то время выглядело слишком смелым, так как тела большой массы не проявляли волновых свойств.

В связи с высказанной де Бройлем идеей был проведен ряд экспериментов по обнаружению волновых свойств у микрочастиц.

Девиссоном и Джермером эксперименты проводились по схеме, аналогичной опытам по дифракции рентгеновских лучей от поверхности кристалла. С помощью электронной пушки формировался пучок электронов с постоянной скоростью v, который посылался под углом скольжения на поверхность кристалла. Интенсивность отраженного пучка электронов I измерялась приемником (рис. 8.2 а).

 

 

 

 
 
Рис. 8.2


 

При фиксированном угле скольжения непрерывно изменяли напряжение U на электронной пушке. При этом оказалось, что зависимость интенсивности I от носит не монотонный характер (рис. 8.2 б). Максимумы интенсивности наблюдались на одинаковом расстоянии друг от друга, что можно объяснить с помощью формулы де Бройля (8.8):

 

Как и для рентгеновских лучей, положение максимумов и минимумов интенсивности зависит от длины волны.

Томсоном и Тартаковским пучок электронов, имеющих постоянную скорость, посылался на тонкий лист металла, который можно рассматривать как трёхмерную дифракционную решетку. Электроны, пройдя через фольгу, давали на экране дифракционную картину.

Аналогичные опыты, проведенные с другими микрочастицами (протонами, атомами, молекулами), подтвердили наличие волновых свойств у потока микрочастиц.

 

<== предыдущая лекция | следующая лекция ==>
Спектры атома водорода по теории Бора | Соотношения неопределенностей Гейзенберга
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 655; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.