Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Математичний маятник

Математичний маятник - матеріальна точка, підвішена на невагомій нитці, здатній здійснювати коливання в площині.

I=m=

Рис.6.3

 

-для математичного маятника

Диференціальне рівняння коливань пружинного маятника і його

рішення

6.6 Дифференціальне рівняння коливань пружного маятника та його розв’язок Рівняння для пружного маятника

(x’=

7. Пружні хвилі Хвильові процеси.

7.1 Подовжні і поперечні хвилі

Коливання, які збуджуються в будь-якій точці пружного середовища (твердому, рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища. Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний) характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості.

Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвиль незалежно від їхньої природи є перенос енергії без переносу речовини.

Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі.

Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу. Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ.

Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі.

Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок від джерела коливань для будь-якого фіксованого моменту часу t.

Приведений графік функції U(x,t) не схожий на графік гармонічного коливання. Графік хвилі (рис.7.1) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.

Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 7.1). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто

Рис. 7.1

Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один.

Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною.


7.2 Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.

Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 21). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t, а його величина буде дорівнювати

Розглянемо деяку точку В, яка перебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t) = A cos, то точка В пружного середовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд

(7.1)

 

де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела.

Рівняння (7.1) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то

В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х, має вигляд

(7.3)

де А – амплітуда хвилі; ω – циклічна частота хвилі;–початкова фаза коливань, обумовлена вибором початкових значень х і t; [ ω (t - x/υ) + φ0] – фаза плоскої хвилі.

В рівнянні (7.3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює

(7.4)

З врахуванням (7.4) рівняння (7.3) матиме вигляд

(7.5)

Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (7.5) тільки знаком члена kх.

Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто

(7.6)

Диференціюємо вираз (7.6) за часом, одержимо

,

звідки

Отже, швидкість υ поширення хвилі в рівнянні (7.6) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю.

Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так

(7.7)

де r –відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.

У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом Рівняння (7.7) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).

З рівняння (7.3) можна одержати, що

тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем.

7.3 Одномірне хвильове рівняння. Швидкість поширення хвиль

Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим.

Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 2). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.

Рис. 7.2

Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука

(7.8)

де Е ─ модуль Юнга; ─ відносна деформація; F ─ зовнішня сила; S ─ площа виділеної ділянки пружного середовища в напрямі осі х.

В граничному випадку при , рівняння (8) запишеться так

(7.9)

Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.3). Запишемо для цієї ділянки другий закон Ньютона

(7.10)

Сили в рівнянні (7.10) є пружними силами, а тому відповідно до рівняння (7.9) запишуться так

(7.11)

Якщо підставити ці сили (7.11) в другий закон Ньютона, то після деяких перетворень одержимо:

(7.12)

де m ─ маса виділеної ділянки пружного середовища.

Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так

m = ρSΔx. (7.13)

Рис.7.3

З урахуванням значення маси (7.13) і нескладних перетворень рівняння (7.12) запишеться так:

(7.14)

Розглянувши граничний випадок при якому, з рівняння (14) одержуємо рівняння, яке називається хвильовим рівнянням

(7.15)

Рівняння (7.15) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі

(7.16)

Знайдемо другі частинні похідні за часом t і координатою х від рівняння (7.16)

(7.17)

Після підстановки похідних (7.17) в рівняння (7.15) та необхідних скорочень одержимо

(7.18)

Але оскільки , то хвильове рівняння (7.15) буде мати інший вигляд

(7.19)

Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини

(7.20)

Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (7.20) є фазовою швидкістю лише поздовжніх хвиль.

Фазова швидкість поперечних хвиль, які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (7.20) на модуль зсуву G

(7.21)

Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто

(7.22)

Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (7.15) і (7.19) будуть нелінійними.

Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:

(7.23)

Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.

 

7.4 Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля

. (7.24)

Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі і швидкість деформації у всіх

його точках були однакові.

Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою

де - кінетична енергія виділеного об’єму; - потенціальна енергія пружної деформації цього об’єму.

Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою

, (7.25)

де ρ - густина середовища виділеного об’єму.

Першу похідну за часом від (7.24) підставимо в (7.25), одержимо

(7.26)

де ─ хвильове число.

У відповідності з рис. 7.4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:

Рис.7. 4

(7.27)

де k – коефіцієнт пружності середовища, який відповідно до закону Гука (8) дорівнює ; ─ величина деформації виділеного об’єму пружного середовища.

З урахуванням цих позначень (7.27) матиме вигляд

. (7.28)

Помножимо й поділимо (7.28) на Δх2, одержимо

(7.29)

В граничному випадку при Δх=0 одержуємо

(7.30)

Підставимо у формулу (7.30) значення модуля Юнга , і швидкість деформації , одержимо

(7.31)

Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (7.26) і потенціальної енергії (7.31)

(7.32)

Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює , то одержимо середнє значення повної енергії буде дорівнювати

(7.33)

де ΔV=SΔx ─ елементарних об’єм пружного середовища.

Середнє значення густини енергії легко одержати, якщо (7.33) поділити її на величину виділеного об’єму пружного середовища

. (7.34)

Нехай через площадку S (рис.4), яка є перпендикулярною до напрямку поширення хвилі, за час Δt переноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати

, (7.35)

де ─ вектор густини потоку енергії; ─ середня густина перенесеної хвилями енергії; ─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії.

7.5 Хвильові процеси. Подовжні і поперечні хвилі

Коливання, які збуджуються в будь-якій точці пружного середовища (твердому, рідкому або газоподібному), передаються від однієї точки середовища до іншої з кінцевою швидкістю, яка залежить від властивостей цього середовища. Чим дальше розташовані частинки середовища від джерела коливань, тим пізніше вони почнуть коливатися. Інакше кажучи, фази коливань частинок середовища і джерела тим більше відрізняються одна від одної, чим більша ця відстань. При вивченні поширення коливань в середовищі не враховується дискретний (молекулярний) характер будови самого середовища. В цьому випадку вважають що частинки середовища мають неперервне заповнення навколишнього простору і проявляють пружні властивості.

Процес поширення коливань у суцільному пружному середовищі називається хвильовим процесом (або хвилею). При поширенні хвилі частинки середовища не рухаються разом із хвилею, а коливаються біля своїх положень рівноваги. Разом із хвилею від частинки до частинки середовища передається лише стан коливального руху і його енергія. Тому основною властивістю усіх хвиль незалежно від їхньої природи є перенос енергії без переносу речовини.

Серед різноманітних хвиль, які зустрічаються в природі й техніці, можна виділити такі їх типи: хвилі на поверхні рідини, пружні і електромагнітні хвилі. Пружні механічні хвилі виникають і поширюються лише в пружному середовищі. Пружні хвилі ще діляться на подовжні й поперечні. У подовжніх хвилях частинки середовища коливаються в напрямку поширення хвилі, у поперечних – у площинах, перпендикулярних до напрямку поширення хвилі.

Подовжні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях стиску і розтягу. Це означає, що поздовжні хвилі поширюються у твердих, рідких і газоподібних середовищ.

Поперечні хвилі можуть поширюватися в середовищах, у яких виникають пружні сили при деформаціях зсуву, тобто фактично тільки у твердих тілах. У рідинах і газах виникають лише подовжні хвилі, а у твердих тілах — як подовжні, так і поперечні хвилі.

Пружна хвиля називається синусоїдальною (або гармонічною), якщо відповідні їй коливання частинок середовища є гармонічними. На рис. 21 показана синусоїдальна поперечна хвиля, яка поширюється зі швидкістю υ уздовж осі х, тобто показана залежність між зміщенням U(x,t) частинок середовища, у хвильовому процесі, і відстанню х цих частинок від джерела коливань для будь-якого фіксованого моменту часу t.

Приведений графік функції U(x,t) не схожий на графік гармонічного коливання. Графік хвилі (рис.7.4) показує залежність зміщення всіх частинок середовища від відстані до джерела коливань у даний момент часу, а графік гармонічних коливань — залежність зміщення даної частинки від часу.

Відстань між найближчими частинками, які коливаються в одній фазі, називається довжиною хвилі λ (рис. 7.4). Довжина хвилі дорівнює відстані, на яку поширюється фаза коливань за час в один період, тобто

Рис. 7.5

Якщо розглянути хвильовий процес трохи докладніше, то стане ясно, що в хвильовому русі коливаються не лише частинки, розташовані уздовж осі х, а й сукупність частинок, розташованих у деякому об’ємі, тобто хвиля, поширюючись від джерела коливань, охоплює все нові і нові області простору. Геометричне місце точок, які коливаються в однаковій фазі, називається хвильовою поверхнею. Хвильових поверхонь можна провести безліч. Хвильова поверхня у будь який момент часу називається хвильовим фронтом. Для цього моменту часу хвильовий фронт може бути лише один.

Хвильові поверхні можуть мати довільну форму. В найпростішому випадку хвильові поверхні є сукупністю площин, або сукупністю концентричних сфер. Відповідно хвиля називається плоскою або сферичною.

7.6. Рівняння біжучої хвилі. Фазова швидкість. Сферична хвиля

 

Якщо хвилі, поширюючись в пружному середовищі з кінцевою швидкістю, переносять енергію, то вони називаються біжучими. Перенос енергії в хвильовому русі кількісно характеризується вектором густини потоку енергії. Вектор потоку енергії вперше для механічних пружних хвиль був введений російським фізиком Умовим і називається вектором Умова. Напрямок вектора Умова збігається з напрямком переносу енергії, а його модуль дорівнює енергії, яка переноситься хвилею через одиничну площадку, розташовану перпендикулярно до напрямку поширення хвилі, за одиницю часу.

Для одержання рівняння біжучої хвилі ─ залежності зміщення коливної точки пружного середовища від координати і часу ─ розглянемо плоску синусоїдальну хвилю, допустивши, що вісь х збігається з напрямком поширення хвилі (рис. 7.4). У даному випадку хвильові поверхні, тобто поверхні однакової фази, перпендикулярні до осі х, а тому всі точки пружного середовища на цих поверхнях коливаються однаково. Зміщення будь якої точки пружного середовища від положення рівноваги в цьому випадку залежить лише від координати х і часу t, а його величина буде дорівнювати

Розглянемо деяку точку В, яка перебуває на відстані х від джерела коливань (рис. 1). Якщо коливання точок пружного середовища, які лежать у площині х = 0, описуються функцією U(0,t) = A cos, то точка В пружного середовища теж буде коливатися за тим же законом, але її коливання будуть відставати за часом від коливань джерела на τ, тому що для проходження хвилею відстані х потрібен час τ = , де швидкість поширення хвилі. Тоді рівняння коливань частинок, які лежать у площині х, буде мати вигляд

(7.36)

де А – максимальне зміщення виділеної коливної точки В від положення рівноваги; ω – циклічна частота генератора коливань джерела.

Рівняння (7.36) є рівняння біжучої хвилі. Якщо плоска хвиля поширюється в протилежному напрямку, то

В загальному випадку рівняння плоскої синусоїдальної хвилі, яка поширюється без поглинання енергії уздовж позитивного напрямку осі х, має вигля

(7.37)

де А – амплітуда хвилі; ω – циклічна частота хвилі;–початкова фаза коливань, обумовлена вибором початкових значень х і t; [ ω (t - x/υ) + φ0] – фаза плоскої хвилі.

В рівнянні (3) синусоїдальний характер хвилі характеризують хвильовим числом, яке дорівнює

(7.38)

З врахуванням (7.38) рівняння (7.37) матиме вигля

(7.39)

Рівняння хвилі, яка поширюється в сторону менших значень осі х, відрізняється від (7.39) тільки знаком члена kх.

Розглянемо випадок, коли в процесі хвильового руху, фаза коливань не змінюється з часом, тобто

(7.38)

Диференціюємо вираз (7.38) за часом, одержимо ,

Звідки

Отже, швидкість υ поширення хвилі в рівнянні (7.38) є не що інше, як швидкість переміщення фази хвилі, а тому її називають фазовою швидкістю.

Сферичні хвилі утворюються в однорідному і ізотропному середовищі від точкових джерел коливань. Якщо повторити хід міркувань для плоскої хвилі, можна показати, що рівняння сферичної синусоїдальної хвилі – хвилі, хвильові поверхні якої мають вигляд концентричних сфер, записується так

(7.39)

де r –відстань від точкового джерела сферичних хвиль до виділеної точки пружного середовища.

У випадку сферичної хвилі навіть у середовищі, яке не поглинає енергії, амплітуда коливань не залишається постійною, а зменшується з відстанню за законом Рівняння (7.39) має місце лише для великих r, які значно перевищуючі розміри джерела коливань (джерело коливань тут можна вважати точковим).

З рівняння (7.39) можна одержати, що

тобто фазова швидкість синусоїдальних хвиль залежить від їхньої частоти. Це явище називають дисперсією хвиль, а середовище, у якому спостерігається дисперсія хвиль, називається дисперсним середовищем.

 

7.7 Одномірне хвильове рівняння. Швидкість поширення хвиль

Рівняння довільної хвилі є розв'язком рівняння, яке називається хвильовим.

Для виведення цього рівняння скористаємось рівняння плоскої хвилі, яка поширюється в напрямку осі х. Розглянемо ділянку пружного середовища, яке характеризується модулем пружності Е (рис. 7.1). З рисунка видно, що виділений елемент має переріз S і довжину Δх. Під дією зовнішньої сили F виділена ділянка пружного середовища деформується на величину ΔU.

Рис. 7.6

Оскільки середовище є пружним, то для виділеної ділянки можна застосувати закон Гука

(7.40)

де Е ─ модуль Юнга; ─ відносна деформація; F ─ зовнішня сила; S ─ площа виділеної ділянки пружного середовища в напрямі осі х.

В граничному випадку при , рівняння (7.40) запишеться так

(7.41)

Якщо збуджувати поздовжню хвилю в деякому пружному середовищі, яким є наприклад стержень перерізом S з модулем Юнга Е, то на виділену ділянку будуть діяти дві сили (рис.7.4). Запишемо для цієї ділянки другий закон Ньютона

(7.42)

Сили в рівнянні (7.42) є пружними силами, а тому відповідно до рівняння (7.41) запишуться так

(7.43)

Якщо підставити ці сили (11) в другий закон Ньютона (7.42), то після деяких перетворень одержимо

(7.43)

 

де m ─ маса виділеної ділянки пружного середовища.

Масу виділеної ділянки пружного середовища можна виразити через об’єм і густину речовини стержня так

m = ρSΔx. (7.45)

Рис.7.6

З урахуванням значення маси (7.45) і нескладних перетворень рівняння (7.43) запишеться так

(7.46)

Розглянувши граничний випадок при якому, з рівняння (7.46) одержуємо рівняння, яке називається хвильовим рівнянням

(7.47)

Рівняння (7.47) є лінійним диференціальним рівнянням другого порядку в частинних змінних. Розв’язком такого рівняння є уже відоме рівняння плоскої хвилі

(7.48)

Знайдемо другі частинні похідні за часом t і координатою х від рівняння (7.49)

(7.50)

Після підстановки похідних (7.50) в рівняння (7.48) та необхідних скорочень одержимо

(7.51)

Але оскільки , то хвильове рівняння (7.47) буде мати інший вигляд

(7.49)

Таким чином швидкість поширення механічних хвиль у пружному середовищі залежить від пружних властивостей цього середовища і його густини

(7.50)

Оскільки модуль Юнга характеризує стиснення або розтягування пружного середовища, то одержана швидкість (7.50) є фазовою швидкістю лише поздовжніх хвиль.

Фазова швидкість поперечних хвиль, які можуть існувати лише в твердому пружному середовищі, визначають заміною модуля Юнга в (20) на модуль зсуву G

(7.51)

Розрахунки показують, що в твердому середовищі модуль Юнга E майже на порядок перевищує модуль зсуву G, тому фазова швидкість поздовжньої хвилі тут більша за швидкість поперечної хвилі, тобто

(7.52)

Важливо відмітити, що для механічних хвиль, які мають велику довжину λ рівняння (7.50) і (7.51) будуть нелінійними.

Якщо механічна хвиля поширюється в однорідному ізотропному середовищі, то хвильове рівнянням буде мати вигляд:

(7.53)

Для механічних хвиль властивий принцип суперпозиції. Це означає, що при накладанні механічних хвиль відсутнє їх спотворення.

 

8. Енергія пружних хвиль. Потік і густина потоку енергії хвиль

Нехай в деякому пружному середовищі в напрямі осі х поширюється плоска поздовжня хвиля

 

. (24)

Виділимо в цьому середовищі елементарний об’єм ΔV, настільки малий, щоб швидкість хвилі і швидкість деформації у всіх його точках були однакові.

Повну механічну енергію, локалізовану у виділеному об’ємі розраховують за формулою

де - кінетична енергія виділеного об’єму; - потенціальна енергія пружної деформації цього об’єму.

Кінетичну енергію, яку має виділений об’єм пружного середовища знаходимо за формулою

, (8.1)

де ρ - густина середовища виділеного об’єму.

Першу похідну за часом від (7.50) підставимо в (7.51), одержимо

(8.2)

де ─ хвильове число.

У відповідності з рис. 4 потенціальну енергію пружної деформації виділеного об’єму знаходимо так:

Рис. 8.1

(8.3)

де k – коефіцієнт пружності середовища, який відповідно до закону Гука дорівнює ; ─ величина деформації виділеного об’єму пружного середовища.

З урахуванням цих позначень (8.3) матиме вигляд

. (8.4)

Помножимо й поділимо (8.4) на Δх2, одержимо

(8.5)

В граничному випадку при Δх=0 одержуємо

(8.6)

Підставимо у формулу (8.6) значення модуля Юнга , і швидкість деформації , одержимо

(8.7)

Повну енергію, локалізовану у виділеному об’ємі пружного середо-вища, одержимо при додаванні кінетичної енергії (7.45) і потенціальної енергії (8.7).

(8.8)

Якщо врахувати, що середнє значення квадрата синуса за час в один період дорівнює , то одержимо середнє значення повної енергії буде дорівнювати

(8.9)

де ΔV=SΔx ─ елементарних об’єм пружного середовища.

Середнє значення густини енергії легко одержати, якщо (8.9) поділити її на величину виділеного об’єму пружного середовища

. (8.10)

Нехай через площадку S (рис.8.1), яка є перпендикулярною до напрямку поширення хвилі, за час Δt переноситься енергія ΔW. Тоді вектор густини енергії буде дорівнювати

, (8.11)

де ─ вектор густини потоку енергії; ─ середня густина перенесеної хвилями енергії; ─ вектор швидкості, модуль якої дорівнює фазовій швидкості хвиль з напрямком поширення хвиль і відповідно переносу енергії.

Вектор потоку енергії вперше одержав і розглянув видатний російський фізик Умов. На честь цього фізика він був названий вектором Умова.


ЛІТЕРАТУРА

 

1. Воловик П.М. Фізика. (Підручник для університетів). – К.; Ірпінь: Перун, 2005. – 864 с.

2. Кучерук І.М., Горбачук І.Т., Луцик П.П. Загальний курс фізики. У трьох томах. Т. 1. Механіка. Молекулярна фізика і термодинаміка. – К.: Техніка, 2006. – 532 с.

3. Кучерук І.М., Горбачук І.Т., Луцик П.П. Загальний курс фізики. У трьох томах. Т. 2. Електрика і магнетизм. – К.: Техніка, 2006. – 452 с.

4. Кучерук І.М., Горбачук І.Т. Загальний курс фізики. У трьох томах. Т. 3. Оптика. Квантова фізика. – К.: Техніка, 2006. – 518 с.

5. Загальний курс фізики: Збірник задач / І.П. Гаркуша, І.Т. Горбачук, В.П. Курінний та ін.; За заг. ред. І.П. Гаркуші. К.: Техніка, 2004. – 560 с.

6. Волькенштейн В.С. Сборник задач по общему курсу физики. М.: Наука, 1985. – 384 с.

7. Детлаф А.А., Яворский Б.М. Курс физики: Учебное пособие для втузов. − М.: Высшая школа, 2002. − 718 с.

8. Трофимова Т.И. Курс физики. М.: Высшая школа, 2001. – 542 с.

9. Чертов А.Г., Воробьев А.А. Задачник по физике: Учебное пособие. − М.: Высшая школа, 1981. − 496 с.

 

Додаткова література

10. Кудрявцев П.С. Курс истории физики. – М.: Просвещение, 1982. – 447 с.

11. Савельев И.В. Курс общей физики, т. 1. Механика. Молекулярная физика. – М.: Наука, 1988. − 432 с.

12. Савельев И.В. Курс общей физики, т. 2. Электричество и магнетизм. Вол-ны. Оптика. – М.: Наука, 1988. − 496 с.

13. Савельев И.В. Курс общей физики, т. 3. Квантовая оптика. Атомная фи-зика. Физика твердого тела. Физика атомного ядра и элементарных час-тиц. – М.: Наука, 1988. − 496 с.

14. Савельев И.В. Курс физики: Учебное пособие. В 3-х тт. – 2-е изд. − СПб: Изд-во «Лань», 2006.

 

<== предыдущая лекция | следующая лекция ==>
Теорема Штейнера. Величина моменту інерції залежить від розташування осі, щодо якої відбувається обертання | Контрольні питання. 1. Поняття екологічного права як галузі права
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 665; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.217 сек.