Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Довжиною хвилі є відстань, на яку поширюється хвильовий процес за час одного періоду коливань




Отже, за Максвеллом, змінне в часі електричне й магнітне поля породжують одне одного, і цей процес може поширюватися від точки до точки в просторі, збуджуючи електромагнітні хвилі.

 

Основою теорії є рівняння Максвелла. У вченні про електромагнетизм ці рівняння відіграють таку саму роль, як і закони Ньютона в механіці або основні закони (принципи) в термодинаміці. Рівнянням Максвелла підлягає поширення електромагнітних хвиль.

У диференціальній формі рівняння Максвелла набувають вигляду:

(4.1)

 

де В = μμ0Η, D = εε0Ε0 і μ0 – електрична і магнітна сталі, ε і μ – відносні діелектрична

і магнітна проникності середовища),

j – густина струму провідності;

ρ – об'ємна густина електричних зарядів.

Для з'ясування основних закономірностей, що характеризують поширення електромагнітних хвиль, розглянемо поширення плоскої електромагнітної хвилі в однорідному непровідному середовищі (ρ = 0, j = 0).

Якщо вісь x направити перпендикулярно до хвильових поверхонь, то E і H, а отже, і їхні складові не залежатимуть від координат t та x, тому

 

і рівняння (4.1) спрощуються:

(4.2)

(4.3)

 

Отже, саме поле хвилі не має складової вздовж осі х, тобто вектори Ε і Η перпендикулярні до напряму поширення хвилі. Рівняння (4.2) дають зв'язок між складовими Еу і Нz, а рівняння (4.3) зв'язують складові Еz і Ну.

Щоб описати плоску електромагнітну хвилю, досить взяти одну пару, наприклад, Еу і Нz. При цьому можна прийняти другу пару рівною 0: Еz = 0 і Ну= 0.

Завдяки прийнятому припущенню можна використовувати тільки одну із систем рівнянь (4.2) та (4.3).

 

Описуючи хвилю, візьмемо першу групу рівнянь (4.2), поклавши Еz = Ηy = 0.

Якщо продиференціювати перше рівняння (4.2) по x і врахувати, що

(це випливає із незалежності змінних x і t), то, підставивши потім з другого рівняння, дістанемо хвильове рівняння для Εу:

(4.4)

Диференціюючи по x друге рівняння (4.2), матимемо після аналогічних перетворень хвильове рівняння для Нz:

(4.5)

Оскільки інші складові Ε i Η дорівнюють нулю, то Ε = Εy Η = Ηz. Остаточно рівняння для плоскої електромагнітної хвилі матимуть такий вигляд:

(4.6)

Отже, обидва компоненти електромагнітного поля Ε і Η описуються однаковим диференціальним рівнянням. Процеси, які описуються рівняннями (4.6), мають хвильовий характер. Зокрема, розв'язком рівняння (4.6) для складової електричного поля є така функція:

(4.7)

Цей вираз є рівнянням плоскої біжучої хвилі, що поширюється вздовж позитивного напрямку осі x з амплітудою Ео, періодом коливань Τ і швидкістю поширення υ.

Якщо позначити

то рівняння (4.7) можна записати так:

(4.8)

де φ - фаза хвилі.

Якщо розглядати хвильовий процес у будь-якій точці простору в залежності від часу, то ми маємо покласти x = const і вважати змінною лише величину t. Для спрощення покладемо x = 0. Тоді фаза залежатиме від часу:

(4.9)

Визначимо проміжок часу, за який φ змінюється на 2π, а Е повторює своє значення, що відповідає моменту t. Скориставшись співвідношенням (4.9), маємо

(4.10)

Звідси випливає, що зміна фази на величину 2π відбувається за . Отже, напруженість електричного поля повторює свої значення в даній точці простору через проміжки часу Т, тобто Τ є періодом коливань вектора напруженості електричного поля Е.

На рис. 4.2 зображено залежність вектора напруженості електричного поля Ε від часу.

І

Рис. 4.2 Рис. 4.3

 

Можна графічно зобразити стан процесу в певний момент часу t = const, наприклад при t = t0, то утворений графік буде подібним до графіка на рис. 4.2, але змінною величиною в цьому разі стане координата х. Графік показує миттєве положення хвиль у момент часу t = t0 (рис. 4.3).

 

Період (по координаті) зміни напруженості електричного поля Ε в просторі можна знайти з таких умов. У точці x при t = t0 фаза матиме значення. Більш віддалені точки хвилі відповідатимуть більш раннім моментам проходження їх через точку x = 0. Нехай на відстані від точки x фаза зміниться на 2π, тобто дорівнюватиме φ-2π. Тоді Звідси, враховуючи, що дістанемо

(4.11)

Оскільки при зміні φ на 2π вектор Ε здійснює повне коливання, то величина є періодом зміни функції Ε в просторі й називається довжиною хвилі. Цю величину позначають літерою λ. Довжину хвилі можна виразити через швидкість її поширення і період коливань:

λ = uΤ (4.12)

 

У загальному випадку змінюються обидві величини, тобто t і x Якщо спостерігати за якоюсь точкою хвилі, тоді слід вважати сталою величину φ:

(4.13)

Рівняння (4.13) для кожного моменту часу є рівнянням площини. Площини сталої фази є хвильовими поверхнями електромагнітної хвилі тобто ці хвилі плоскі. В більш загальному випадку поверхня хвилі, тобто геометричне місце точок, де фаза хвилі залишається сталою, може бути більш складною поверхнею - сферою, еліпсоїдом, циліндром тощо.

 

Диференціюючи вираз (4.13), дістанемо, або

(4.14)

де υ - швидкість поширення хвилі.

 

 

Покажемо тепер, що рівняння хвилі (4.7) задовольняє диференціальне рівняння (4.6) і є його розв'язком. Для цього, диференціюючи вираз (4.7), знайдемо другі частинні похідні від Ε по t і х. Вони матимуть такі значення:

Знайдемо з обох виразів значення Е і прирівняємо їх. Тоді після перетворень дістанемо:

(4.15)

Прирівнюючи рівняння (4.6) і (4.15), неважко дістати вираз для швидкості поширення електромагнітної хвилі

(4.16)

Швидкість поширення світла у вакуумі

Види хвиль Довжина хвилі, м Частота, Гц
Низькочастотні >104 <3 104
Радіохвилі 104... 10-1 3*104...3*1010
Ультрарадіохвилі 10-1...10-4 3 1010... 3 1012
Інфр. червоне випромінювання 10-4...7,7·10-7 3*1012...4*1014
Видиме світлове випромінювання 7,7* 10-7...4*10-7 4 *1014...7,5*1014
УФ випромінювання 4*10-7...10-8 7,5 1014...3-Ю16
Рентгенівське випромінювання 10-8... 10-11 3 1016...3 1019
Гамма-випромінювання <10-11 >3 1019

 

Отже, швидкість поширення електромагнітного поля в середовищі дорівнює швидкості світла у вакуумі, поділеній на, де ε і μ відповідно відносна діелектрична і магнітна проникності середовища. Якщо електромагнітна хвиля поширюється у вакуумі, де ε = 1, μ = 1, то

υ = с = 2,998*108 м/с.

Звідси випливає, що швидкість поширення світла і швидкість поширення електромагнітних хвиль у вакуумі однакові. Це дало підставу Дж. Максвеллу ототожнити світлові хвилі з електромагнітними. Так виникла електромагнітна теорія світла, згідно з якою світлові хвилі є електромагнітними хвилями дуже короткої довжини. Для неферомагнітних речовин μ = 1, отже,або

(4.17)

де n – абсолютний показник заломлення неферомагнітних речовин, тобто показник заломлення відносно вакууму. Згідно із співвідношенням (4.17) показник заломлення для них дорівнює квадратному кореню з діелектричної проникності. Це положення називають законом Максвелла.

 

До електромагнітних хвиль належать хвилі різної довжини від радіохвиль до гамма-випромінювання. Встановити які-небудь чіткі межі між різними видами електромагнітних випромінювань немає можливості, їх насправді не існує. Тому поділ електромагнітного спектра на певні ділянки має умовний характер, за винятком ділянки, що відповідає видимому випромінюванню, межі якого чітко визначені властивостями людського ока. В табл. 4.1 наведено діапазони, на які умовно поділяють шкалу електромагнітних хвиль.

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 753; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.