Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

A solution of linear homogeneous differential equations of the second order with constant coefficients




Proof.

A function is a solution of equation.

 

Theorem 6.3. Let functions and be the linear dependent solutions of equation, then will be not the general solution of equation.

Proof. Because and are the linear dependent, then

 

Substitute into , we get

 

, denote,

 

.

 

The solution can not be general solution of equation , because the solution of any differential equation of the second order must have two arbitrary constants.

 

Theorem 6.4.. Let functions and be the linear independent solutions of equation, then will be the general solution of equation.

 

Proof. Because and are solutions of equation , according to the

Theorem 6.1, and also will be the solutions of. Their sum, due to Theorem 6.2,will be the solution of.

 

Conclusion. To find the general solution of equation it is necessary to find two linear independent solutions of and write the general solutions in the form, where and are arbitrary constants.

For finding particular solution we need to find two constants. For that we will use initial conditions:

.

 

 

 

A solution of this equation we will find in the form, where is unknown constant.

Finding , and substituting into equation , we will have

Because, then

 

Definition 6.3. An equation is called the characteristic equation of the differential equation.

 

If is the solution of equation , then also will be the solution of . The form of solution of differential equation will depend on the solution of equation.

Let us consider three cases:

I. , then the general solution of differential equation will be

.

In fact, if are roots of the equation , then are roots of equation . In example 6.1. we proved that are linear independent, so according to Theorem 6.4is general solution of differential equation .

 

II. , then the general solution of the differential equation will be




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 553; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.