Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Пластическая деформация

Пластическая деформация не исчезает после снятия нагрузки. При возрастании напряжения атомы смещаются на значительные расстояния и занимают новые положения равновесия. Деформация становится необратимой. После снятия нагрузки устраняется только ее упругая составляющая.

Пластическая деформация в кристаллах осуществляется, в основном, скольжением атомных плоскостей относительно друг друга (рис. 21).

а б в г

Рис. 21. Схема пластической деформации идеального кристалла:

а – до деформации; б – упругая деформация; в – упругая и пластическая деформация;

г – после деформации (упругая составляющая исчезла, пластическая осталась)

 

Под действием силы P произошло смещение верхней части кристалла относительно нижней по плоскости mn. При этом у атома 1 сменился сосед: был 2, стал 4. Кажется, что это скольжение произошло путем одновременного разрыва межатомных связей по всей плоскости скольжения (между атомами 1 и 2, 3 и 4, и т. д.).

Зная энергию связи в кристалле, подсчитали теоретическую прочность (исходя из предположения об одновременном разрыве связей). Она оказалась огромной: в 100-1000 раз больше реальной. (Для железа, например, напряжение сдвига составляет 20 МПа, а по теоретическому расчету получается 13300 МПа.) Пришлось принять другую гипотезу: ввести понятие дефекта кристаллического строения (дислокации) и предположить механизм его перемещения. Тогда теоретическая прочность совпала с реальной.

Механизм пластической деформации: перемещение одной части кристалла относительно другой происходит за счет движения дислокаций.

Изобразим реальный кристалл, содержащий дислокацию (рис. 22). В области дислокации под нагрузкой атомы легко смещаются на расстояния, меньшие, чем межатомное. При этом происходит разрыв всего одной связи, между атомами 4 и 7 (рис. 22, а), зато возникает новая связь между атомами 1 и 7 – и дислокация перемещается на одно межатомное расстояние (рис. 22, б).

а б в

Рис. 22. Схема пластической деформации реального кристалла

 

Итак, в реальном, содержащем дислокации кристалле атомы смещаются под воздействием нагрузки на расстояния, меньшие межатомного, а дислокации при этом скачком перемещаются на целые межатомные расстояния. Процесс перемещения дислокаций продолжается до выхода на поверхность кристалла (рис. 22, в). Каждая дислокация при этом образует ступеньку шириной в одно межатомное расстояние. Но дислокаций – миллионы, поэтому их движение дает видимую пластическую деформацию всего кристалла (рис. 23).

Рис. 23. Деформация монокристалла, видимая невооруженным глазом

 

Пластическая деформация поликристалла происходит по такому же механизму (рис. 24). Скольжение идет в каждом зерне по множеству плоскостей, при этом меняется форма каждого зерна, а значит – и всего изделия. После пластической деформации микроструктура имеет характерный вид: зерна вытянуты в направлении действия наибольших напряжений.

Иногда кристаллическая решетка в каждом зерне получает определенную ориентацию относительно действующих напряжений. На рис. 25 это условно показано параллельными осями кристаллов. Такая ориентированная структура называется текстурой.


Скольжение дислокаций происходит легче всего в атомных плоскостях с максимальной плотностью атомов. Их называют плоскостями наилегчайшего сдвига. Расположение этих плоскостей в решетках металлов показано на рис. 26.

в ОЦК (Fea) в ГЦК (Feg) в ГПУ (Zn, Be)

Рис. 26. Плоскости (заштрихованы) и направления (показаны стрелками)

наилегчайшего сдвига в разных типах решеток

 

В заключение надо отметить, что скольжение дислокаций не связано с диффузией: нет переноса массы. Оно происходит даже при отрицательных температурах.

<== предыдущая лекция | следующая лекция ==>
Упругая деформация | Разрушение
Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1266; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.033 сек.