Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Алюминий и его сплавы




Цветные металлы и сплавы

Лекция 18

 

 

Именно с цветных металлов началось применение металлов человеком. Вначале это были самородные металлы: медь, золото, серебро, затем олово и свинец.

Характерные особенности цветных металлов:

· окраска,

· большая пластичность,

· низкая твердость,

· низкая температура плавления,

· отсутствие полиморфных превращений.

Общепринято подразделение цветных металлов на следующие группы:

Благородные Легкие Легкоплавкие Тугоплавкие

Pt, Ag, Au, [Cu] Be, Mg, Al, [Ti] Zn, Sn, Pb, Sb, Bi, Hg W, Mo, Ta, Nb, Zr

Благородными, или драгоценными называют металлы, очень трудно поддающиеся окислению, при обычных условиях не вступающие в химические реакции. «Драгоценные» – относительное понятие: еще в XIX в. платина, месторождения которой имеются на Урале, вовсе не считалась драгоценным металлом, в отличие от золота: из нее делали ковши, обручи и другие хозяйственные изделия.

Легкие металлы имеют малый удельный вес и, соответственно, высокую удельную прочность.

Легкоплавкие металлы имеют низкие температуры плавления, применяются обычно для литых изделий. Самый легкоплавкий металл – ртуть (t пл = –39 °C, при комнатной температуре является жидкостью).

Тугоплавкие металлы имеют температуры плавления выше, чем у железа. Самый тугоплавкий металл – вольфрам (t пл = 3410 °C). Надо заметить, что не все ученые-металловеды относят тугоплавкие металлы к цветным, некоторые считают их черными или выделяют в отдельную группу.

 

Алюминий относится к легким металлам: γ = 2,7 г/см3. t пл = 660 °C. Достоинствами алюминия являются малая плотность, высокая электропроводимость, большая удельная прочность. Например, сплав алюминия В96 имеет предел прочности σв = 700 МПа и удельную прочность σв/γ = 23 км. (Для стали эта характеристика не превышает 15 км.)

По объему производства алюминий и его сплавы занимают второе место в мире после железа.

Полезные свойства технического алюминия применяются в следующих областях:

1) высокая пластичность – для получения тонких фольг (упаковка, обкладки конденсаторов, декоративное применение);

2) высокая электропроводимость (65 % от проводимости меди) – в электротехнике (линии электропередач, жилы кабелей);

3) высокая коррозионная стойкость (пленка оксида Al2O3 толщиной
10 мкм защищает поверхность металла) – в быту, для хранения продуктов питания, агрессивных жидкостей;

4) высокая отражательная способность – для изготовления прожекторов, рефлекторов, экранов ТВ;

5) высокая теплопроводность – для изготовления теплообменников в холодильниках.

Примеры изделий: трубопроводы, палубные надстройки судов, провода, кабели, шины, рамы, стеллажи, стойки, офисная мебель, цистерны (молочные и др.).

 

Алюминий с большинством легирующих элементов образует химические соединения и ограниченные твердые растворы.
Сплавы алюминия подразделяют на литейные и деформируемые, упрочняемые и не упрочняемые термической обработкой. Обобщенная диаграмма состояния алюминий – легирующий элемент (рис. 99) позволяет подразделить сплавы следующим образом:

Д – деформируемые сплавы,

Л – литейные сплавы,

Н – не упрочняемые термообработкой сплавы,

У – упрочняемые термообработкой сплавы.

 

Рис. 99. Диаграмма состояния алюминий – легирующий элемент

 

1. Деформируемые сплавы алюминия, не упрочняемые термической обработкой.

Это сплавы с магнием и марганцем. Марки обозначаются АМг и АМц. Применяются для изделий, получаемых глубокой вытяжкой и сваркой, т. е. штампосварных конструкций. Сварка производится неплавящимся вольфрамовым электродом в аргоне или электроконтактная. Пластичные, коррозионно-стойкие. Упрочняются за счет наклепа. Способны к структурному упрочнению (пресс-эффект: выделение мелких интерметаллидных частиц при обработке давлением).

Примеры изделий: сварные емкости, трубопроводы бензина и масла, рамы, кузова, корпуса и мачты судов.

2. Деформируемые сплавы алюминия, упрочняемые термической обработкой.

Это, прежде всего, самые распространенные алюминиевые сплавы – дуралюмины. Слово «дуралюмин» в переводе с французского означает «твердый алюминий». Обозначаются дуралюмины буквой «Д» и порядковым номером марки. Кроме того, в эту группу входят ковочные алюминиевые сплавы (обозначение АК), авиали (АВ), высокопрочные алюминиевые сплавы (В).

Марки дуралюминов: Д1 – нормальный, Д16 – «супердуралюмин», Д18 – заклепочный. Все они содержат медь (около 4 %), магний и марганец.

 
 

Медь – главный легирующий элемент, поэтому превращения в сплавах можно рассмотреть на примере диаграммы состояния Cu – Al (рис. 100).

Рис. 100. Диаграмма состояния алюминий – медь

 

Фазы, равновесные при комнатной температуре: α-твердый раствор меди в алюминии, CuAl2 – химическое соединение, интерметаллид. Эвтектика состоит из этих двух фаз: Э = α + CuAl2.

Линия ab – линия предельной растворимости меди в кристаллической решетке алюминия. Сплавы под этой кривой (от 0,2 до 5,7 % Cu) могут упрочняться термообработкой: закалкой и старением. Но механизм упрочнения здесь иной, чем у сталей, закаливаемых на мартенсит.

В отожженном сплаве частицы CuAl2 довольно крупные; сплав мягок и пластичен (см. рис. 102, а).

При нагреве под закалку (выше линии ab) частицы CuAl2 растворяются, атомы меди (и других легирующих элементов) образуют твердый раствор замещения в решетке алюминия.

При быстром охлаждении, подавляющем диффузию (в холодной воде), твердый раствор сохраняется, но при комнатной температуре он становится пересыщенным (α¢), см. рис. 102, б. Его твердость и прочность невелики, всего на 25 % выше, чем у отожженного сплава, так как это – твердый раствор замещения.

С течением времени при комнатной температуре происходит естественное старени е: в пересыщенном твердом растворе появляются участки, обогащенные медью. Вокруг них кристаллическая решетка искажается, что затрудняет перемещение дислокаций (рис. 102, в). Сплав становится прочнее. Естественное старение идет 5-7 суток.

При нагреве такой процесс идет быстрее. Это – искусственное старение. Чем выше температура искусственного старения, тем быстрее идет распад твердого раствора. В участках, обогащенных медью, формируются частицы CuAl2. При повышении температуры и увеличении выдержки зернышки CuAl2 растут. Расстояние между ними увеличивается, и эффект упрочнения снижается, так как ~ , где R – расстояние между частицами.

На самом деле процессы при старении дуралюмина развиваются в несколько этапов (табл. 4). Вначале образуются только обогащенные медью и магнием участки в твердом растворе. Их называют зонами Гинье-Престона (ГП) по именам ученых, открывших это явление. Они представляют собой диски диаметром 4-6 нм и толщиной несколько атомных слоев (зоны ГП-1). При естественном старении этим все и заканчивается. Но при повышенной температуре или длительной выдержке эти зоны растут, и размещение атомов в них становится упорядоченным (зоны ГП-2). Более высокие температуры приводят к образованию на месте этих зон тонких пластин промежуточной фазы θ¢ состава CuAl2, но с другим типом кристаллической решетки. Наконец, при 200-250 °C образуется стабильная θ-фаза CuAl2 (рис. 101).

Таблица 4

Структура и свойства дуралюмина после старения

Вид старения t, °C Изменения в структуре Изменение свойств
Естественное и низкотемпературное искусственное старение ≤100-150 Зоны ГП1 ↑ σт; σтв≤0,7; ↑ δ, KCU, коррозионная стойкость
Длительное искусственное старение 100-150 Зоны ГП2
Искусственное старение 150-200 θ¢-фаза σтв до 0,95; ↓δ, KCU, коррозионная стойкость
Искусственное старение 200-250 θ-фаза

 

Такие же процессы идут и в других сплавах на основе алюминия. Разница только в составе и строении образующихся фаз.

Итак, упрочняющая термообработка дуралюмина: закалка с 500-510 °C, естественное старение 5-7 суток или искусственное старение (для сплавов, работающих при повышенной температуре).

 
 

а б в

Рис. 102. Микроструктура дуралюмина:

а – после отжига; б – после закалки; в – после старения

В результате закалки и естественного старения дуралюмин Д16 приобретает прочность σв = 540 МПа, что превышает прочность некоторых сталей обыкновенного качества.

Сплав авиаль (АВ) – менее прочный, чем дуралюмин, но более пластичный (содержит ≤0,5 % Cu и Si).

Ковочные алюминиевые сплавы (АК) содержат те же компоненты, что и дуралюмин, и, кроме того, кремний. Детали получают ковкой или штамповкой при 450-475 °C, затем следует закалка и искусственное старение. Применяют для изготовления деталей сложной формы.

Высокопрочные алюминиевые сплавы (В95, В96) после термической обработки имеют σв = 600-700 МПа; предел текучести почти равен пределу прочности. Это сплавы системы Al – Zn – Mg – Cu, иногда с добавлением Cr или Zr. Для повышения коррозионной стойкости листы плакируют чистым алюминием с добавкой 1 % Zn.

Все алюминиевые сплавы этой группы – авиационные. Из них делают лопасти винтов, шпангоуты, тяги управления, обшивку самолетов, стрингеры, лонжероны.

 

3. Литейные алюминиевые сплавы.

Маркируются буквами АЛ. Цифра после букв означает номер марки. Содержат кремний, медь или магний.

Силумины – сплавы алюминия с кремнием – имеют наилучшие литейные свойства. Для измельчения зерна их модифицируют натрием (смесью солей NaCl + NaF).

Некоторые литейные сплавы можно упрочнять термической обработкой. Для разных видов литья разработаны различные сплавы (например, специально для литья под давлением).

Применяют, в основном, для сложных тонкостенных отливок: деталей автомобильных двигателей (картеры и блоки цилиндров, корпуса компрессоров).

 

4. Жаропрочные алюминиевые сплавы.

Работают до 300 °C (поршни, крыльчатки, детали компрессоров турбореактивных двигателей, обшивка сверхзвуковых самолетов).

Состав сложный: содержат железо, никель, титан, цирконий. Могут быть как деформируемыми, так и литейными.

У некоторых сплавов температура рекристаллизации выше температур деформирования и закалки, т. е. полигонизованная структура сохраняется после формообразования и термообработки. Это дает структурное упрочнение на
30-40 % по сравнению с рекристаллизованными сплавами.

 

Ежегодно в мире производится около 20 млн. т алюминия. В России алюминий выпускает Красноярский, Волгоградский, Иркутский и другие алюминиевые заводы. В декабре 2006 г. в Абакане (Хакасия) сдан в эксплуатацию алюминиевый завод мощностью 300 тыс. т в год, первое подобное предприятие за последние 20 лет.





Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 2372; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.