Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Поведение полимеров при нагреве




Чтобы показать зависимость величины деформации ε от температуры, строят термомеханические кривые (при постоянном напряжении и скорости нагрева).

Рис. 110. Термомеханические кривые:

а – аморфный термопласт; б – кристаллический термопласт; в – термореактивный полимер

 

На рис. 110, а показано поведение при нагреве аморфного термопластичного полимера. При низких температурах полимер находится в стеклообразном состоянии (область I) и ведет себя как упругое твердое тело. Затем нагрев переводит его в высокоэластичное состояние (область II). Деформация полимера может достигать здесь сотен процентов (800 % у резин), но она обратима. При дальнейшем нагреве наступает вязко-текучее состояние; полимер ведет себя как вязкая жидкость (область III). Деформация необратима. Это область переработки пластмасс в изделия. Выше температуры термического разложения полимера t разр разрываются ковалентные связи в макромолекулах, выделяются низкомолекулярные соединения, и полимер разрушается. Однако при охлаждении у термопластов происходит полимеризация, структура и свойства полимера восстанавливаются.

Рис. 110, б показывает поведение термопластичного полимера, способного кристаллизоваться. Ниже температуры кристаллизации t кр полимер имеет упорядоченную структуру, выше – переходит в аморфное состояние. Так как на разрушение кристаллической структуры необходимо затратить энергию, кристаллический полимер становится высокоэластичным при более высокой температуре, чем аморфный.

На рис. 110, в показано поведение при нагреве термореактивного полимера. Он способен только на небольшую деформацию в упругой области, а затем, при нагреве выше t разр, необратимо разрушается. При охлаждении полимеризации не происходит, свойства не восстанавливаются.

Область рабочих температур полимера – ниже температуры стеклования t ст, хотя кратковременно он может работать и немного выше этой температуры. Но надо учитывать, что ниже температуры хрупкости t хр полимер хрупко разрушается (для начала деформации здесь нужно напряжение, превышающее предел прочности). Таким образом, полимер надежно работает под нагрузкой в интервале температур от t хр до t ст. Чем этот интервал шире, тем лучше.

Надо представлять, что температуры переходов полимера из одного состояния в другое (t ст и t тектемпература текучести) не являются константами. Они зависят от условий нагружения. Чем больше скорость деформирования, тем выше эти температуры. В этом отличие от фазовых переходов в сплавах.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1156; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.