Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Заполнение зон электронами. Проводники, диэлектрики и полупроводники




Каждая энергетическая зона содержит ограниченное число энер­гетических уровней. В соответствии с принципом Паули на каждом уровне может разместиться не более двух электронов. При ограничен­ном числе электронов, содержащихся в твердом теле, заполненными окажутся лишь несколько наиболее низких энергетических зон. По характеру заполнения зон электронами все тела можно разде­лить на две большие группы.

К первой группе относятся тела, у которых над целиком заполнен­ными зонами располагается зона, заполненная лишь частично (рис. а). Такая зона возникает в том случае, когда атомный уро­вень, из которого она образуется, заполнен в атоме не полностью. Частично заполненная зона может образоваться вслед­ствие наложения заполненных зон на пустые или частично заполненные (рис. б). Наличие зоны, заполненной лишь частично, присуще металлам.

Ко второй группе относятся тела, у которых над целиком заполнен­ными зонами располагаются пустые зоны (рис. в, г). Типичным примером таких тел являются химические элементы IV группы табли­цы Менделеева — углерод в модификации алмаза, кремний, герма­ний и серое олово, имеющее структуру алмаза. К этой же группе тел относятся многие химические соединения — окислы металлов, нитри­ды, карбиды, галогениды щелочных металлов и т. д. Согласно зонной теории твердых тел, электроны внешних энерге­тических зон имеют практически одинаковую свободу движения во всех телах независимо от того, являются они металлами или диэлектриками. Движение осуществляется путем туннельного перехода электро­нов от атома к атому. Несмотря на это, электрические свойства этих тел, в частности удельная электропроводность, различаются у них на много порядков.

По ширине запрещенной зоны тела второй группы условно делят на диэлектрики и полупроводники. К диэлектрикам относят тела, имеющие относительно широкую запрещенную зону. У типичных ди­электриков Eg > 3 эВ. Так, у алмаза Eg — 5,2 эВ; у нитрида бора Eg - 4,6 эВ.

К полупроводникам относят тела, имеющие сравнительно узкую запрещенную зону (рис. г). У типичных полупроводников Eg < 1 эВ. Так, у германия Eg = 0,65 эВ; у кремния Eg = 1,08 эВ; у арсенида галлия Eg = 1,43 эВ

Диэлектрики:

Запрещенная зона Wg~5эВ; ρ=108÷1018Ом*м;

Металлы:

Запрещенная зона Wg=0; ρ=10-8÷10-6Ом*м;

Полупроводники:

Запрещенная зона Wg~1эВ; ρ=10-6÷107Ом*м;

Собственные полупроводники

Химически чистые полупроводни­ки называются собственными полупроводниками. К ним относится ряд чистых химических элементов (германий, кремний, селен, теллур и др.) и многие химические соединения, такие, например, как арсенид галлия (GaAs), арсенид индия (InAs), антимонид индия (InSb), карбид кремния (SiC) и т. д.

На рис. а показана упрощенная схема зонной структуры соб­ственного полупроводника. При абсолютном нуле его валентная зона укомплектована полностью, зона проводимости, расположенная над валентной зоной на расстоянии Eg является пустой. Поэтому при абсолютном нуле собственный полупроводник, как и диэлектрик, об­ладает нулевой проводимостью.


Однако с повышением температуры вследствие термического воз­буждения электронов валентной зоны часть из них приобретает энер­гию, достаточную для преодоления запрещенной зоны и перехода в зону проводимости (рис. б). Это приводит к появлению в зоне проводимости свободных электронов, а в валентной зоне - свободных уровней, на которые могут переходить электроны этой зоны. При при­ложении к такому кристаллу внешнего поля в нем возникает направленное движение электронов зоны проводимости и валентной зоны, приводящее к появлению электрического току. Кристалл становится проводящим.

Чем уже запрещенная зона и выше температура кристалла, тем больше электронов переходит в зону проводимости, поэтому тем более высокую электропроводность приобретает кристалл.

Из изложенного вытекают сле­дующие два важных вывода.

Проводимость полупровод­ников является проводимостью возбужденной: она появляется под действием внешнего фактора, способного сообщить электронам валентной зоны энергию, достаточную для переброса их в зону прово­димости. Такими факторами могут быть нагревание полупроводников, облучение их светом и ионизирующим излучением.

 

где σ – удельная проводимость;

ρ – удельное электрическое сопротивление;

 

n – концентрация носителей заряда;

q – величина заряда;

μ – подвижность носителей заряда;

 

Подвижность носителей заряда характеризует способность перемещаться под действием электрического поля.

В металлах n практически не меняется. В полупроводниках n зависит от температуры.

 
 


где k – постоянная Больцмана

T – абсолютная температура

 

 

Разделение тел на полупроводники и диэлектрики носит в значительной мере условный характер. Алмаз, являющийся диэлектриком при комнатной температуре, приобретает заметную проводимость при более высоких температурах и может считаться также полупроводни­ком. По мере того, как в качестве полупроводников начинают использоваться материалы со все более широкой запрещенной зоной, деление
тел на полупроводники и диэлектрики постепенно утрачивает свой
смысл.

В таблице приведены электрофизические свойства и характеристики зонной структуры трех типичных собствен­ных полупроводников при комнатной температуре — кремния, германия и антимонида индия.

 

Вещество Eg, эВ ρ, Ом×м μn,см2/В×с μp,см2/В×с γ, г/см3 M, г/моль
Ge (70÷800C) 0,66 0,8     5,3  
Si (120÷1400C) 1,12       2,3  

 

Из данных таблицы видно, что с уменьшением ширины запрещенной зоны резко возрастает концентрация свободных носителей заряда в полупроводнике и падает его удельное сопротивление.

 

Примесные полупроводники

Полупроводники любой степени чистоты содержат всегда примес­ные атомы, создающие свои собственные энергетические уровни, полу­чившие название примесных уровней. Эти уровни могут располагаться как в разрешенной, так и в запрещенной зонах полупроводника на различных расстояниях от вершины валентной зоны и дна зоны про­водимости. В ряде случаев примеси вводят сознательно для придания полупроводнику необходимых свойств. Рассмотрим основные типы примесных уровней.

Донорные уровни. Предположим, что в кристалле германия часть атомов германия замещена атомами пятивалентного мышьяка. Герма­ний имеет решетку типа алмаза, в которой каждый атом окружен четырьмя ближайшими соседями, связанными с ним валентными си­лами (рис. а). Для установления связи с этими соседями атом мышьяка расходует четыре валентных электрона; пятый электрон в образовании связи не участвует. Он продолжает двигаться в поле ато­ма мышьяка.

Вследствие ослабления поля радиус орбиты электрона увеличивается в 16 раз, а энергия связи его с ато­мом мышьяка уменьшается примерно в ε2 ≈ 256 раз, становясь равной Ед ≈ 0,01 эВ. При сообщении электрону такой энергии он отрывает­ся от атома и приобретает способность свободно перемещаться в решет­ке германия, превращаясь, таким образом, в электрон проводимости (рис. б).

На языке зонной теории этот процесс можно представить следую­щим образом. Между заполненной валентной зоной и свободной зо­ной проводимости располагаются энергетические уровни пятого элек­трона атомов мышьяка (рис. в). Эти уровни размещаются непо­средственно у дна зоны проводимости, отстоя от нее на расстоянии Eg ≈ 0,01 эВ. При сообщении электронам таких примесных уровней энергии Eg они переходят в зону проводимости (рис. г). Обра­зующиеся при этом положительные заряды («дырки») локализуются на неподвижных атомах мышьяка и в электропроводности не участвуют.

Примеси, являющиеся источником электронов проводимости, на­зываются донорами, а энергетические уровни этих примесей — донорными уровнями. Полупроводники, содержащие донорную примесь, называются электронными полупроводниками, или полупроводниками n-типа, часто их называют также донорными полупроводниками.

Акцепторные уровни. Предположим теперь, что в решетке герма­ния часть атомов германия замещена атомами трехвалентного индия (рис. а). Для образования связей с четырьмя ближайшими со­седями у атома индия не хватает одного электрона. Его можно «заим­ствовать» у атома германия. Для этого требует­ся энергия порядка Еа ≈ 0,01 эВ. Разорванная связь представляет собой дырку (рис. б), так как она отвечает образованию в валентной зоне германия вакантного состояния.

На рис. в показана зонная структура германия, содержащего примесь индия. Непосредственно у вершины валентной зоны на расстоянии Еа ≈ 0,01 эВ располагаются незаполненные уровни атомов индия. Близость этих уровней к валентной зоне приводит к тому, что уже при относительно невысоких температурах электроны из валент­ной зоны переходят на примесные уровни (рис. г). Связываясь с атомами индия, они теряют способность перемещаться в решетке гер­мания и в проводимости не участвуют. Носителями заряда являются лишь дырки, возникающие в валентной зоне.

Примеси, захватывающие электроны из валентной зоны полупро­водника, называют акцепторными, а энергетические уровни этих при­месей — акцепторными уровнями. Полупроводники, содержащие также примеси, называются дырочными полупроводниками, пли полупроводниками p-типа; часто их называют акцепторными полупроводниками.

Лекция 2




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 4133; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.009 сек.