Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Система электропитания




Классификация и общая характеристика ЦРРС

Лекция

Цифровой ствол на аналоговой РРЛ

В данном случае пропускная способность аналогового ствола используется полностью для передачи цифрового сигнала. Однако, должна быть сохранена система телеобслуживания, каналы служебной связи аналоговой РРЛ.

Структурные схемы устройств сопряжения на передаче и на приеме приведены на рисунках 9.3а и 9.3б. На передающей стороне цифровой сигнал подвергается типовым преобразованиям. Преобразователь кода ПК2

 

Рисунок 9.3- Организация ствола на аналоговой РРЛ

 

формирует цифровой трехуровневый сигнал типа ЧПИ. Особенностью спектра такого сигнала является отсутствие низкочастотных составляющих, что и используется для сохранения каналов служебной связи аналоговой РРЛ. Фильтр нижних частот имеет полосу пропускания от 6 до 6,5 МГц, ограничивает спектр трехуровневого сигнала. Так как при этом полоса частот 6,5…9 МГц оказалась свободной, то имеется возможность применять для оценки состояния цифрового ствола КУ существующей аппаратуры аналоговой РРЛ.

Сигнал с выхода устройства сложения поступает на частотный модулятор.

В приемной части с выхода частотного демодулятора сигнал подается на устройство разделения УР. Цифровой трехуровневый сигнал подается на ПК3, где преобразуется в бинарный сигнал. После дескремблера ДСК в ПК4 формируется ЛЦС. Фильтр нижних частот ограничивает мощность тепловых шумов.

По рассмотренному варианту организации цифрового ствола обычно передают цифровые сигналы 8,448 Мбит/с. Для увеличения пропускной способности цифрового ствола применяется одновременная передача двух ЛЦС со скоростями 8,448 Мбит/с методом четырехпозиционной ЧМ.

 

Цель: изучить виды и характеристики, состав и принципы работы цифровых радиорелейных станций.

 

К общим характеристикам ЦРРС (кроме диапазона частот и скорости передачи) относится конфигурация системы. Различают режим работы без резервирования (1+0) – одноствольный и режим работы с резервированием стволов (1+1), при котором по двум стволам одновременно передаются одни и те же цифровые сигналы. При этом используются варианты горячего резервирования (not stand-bay), разнесение по частоте (frequency diversity) и разнесения в пространстве (space diversity).Применение конфигурации (1+1) значительно повышает надежность связи. Переключение на резервный ствол происходит либо при внезапных отказах аппаратуры основного ствола, либо при снижении качества передачи цифрового сигнала, например, при глубоких замираниях радиосигнала. Переключение стволов производится “безобрывным” (hitless) способом, предусматривающим предварительное выравнивание времени задержки цифровых сигналов в двух стволах. Это сохраняет структуру цифровых сигналов и не приводит к нарушениям работы оборудования временного группообразования.

Применяется также конфигурация (2+0), когда по стволам могут передаваться либо одинаковые сигналы (функции переключения принимает на себя аппаратура потребителя), либо разные сигналы для повышения пропускной способности радиоствола.

Важной характеристикой радиорелейной станции является способность работать в составе многопролетной линии. При этом необходимо обеспечить низкий уровень фазовых дрожаний (джиттер) сигнала на каждом пролете, возможность ответвления и ввода основных и сервисных каналов, управление и контроль многопролетной линии.

Практически все производимые ведущими мировыми фирмами РРС имеют в своем составе кварцевый синтезатор частоты.

Параметры станций с точки зрения ЭМС различны и зависят от значения промежуточных частот, полосы фильтров СВЧ и др.

Энергетические характеристики ЦРРС.

Энергетические характеристики определяют дальность связи, характеризуют технический уровень аппаратуры и являются основой для проектирования РРЛ. Для обобщенной оценки энергетических параметров оборудования используется коэффициент системы Кс (system qain):

(10.1)

где Рпд – выходная мощность передатчика;

Рпор – пороговая мощность сигнала на входе приемника (чувствительность приемника), при которой обеспечивается заданная достоверность передачи информации.

Очевидно, что чем больше Кс, тем больше длина пролета и качество связи при фиксированной антенне.

Рассмотрим основные факторы, влияющие на коэффициент системы.

Мощность передатчика для РРС ограничивается Международными рекомендациями, с одной стороны, и возможностью реализации с другой (габариты, надежность, приемлемый уровень энергопотребления). Реально мощность СВЧ передатчика современных РРС находится в пределах от 1 вт до 30 Мвт.

Пороговый уровень полезного сигнала зависит, в основном, от двух факторов: коэффициента шума приемного устройства по входу приемника и от порогового отношения сигнал/шум на входе демодулятора, при котором достигается заданная достоверность. Коэффициент шума определяется входным МШУ и в современных приемниках составляет величину от 1,5 до 9 дБ в зависимости от диапазона.

В общем случае можно записать:

, (10.2)

где -отношение сигнал/шум на входе демодулятора. В зависимости от вида модуляции, метода демодуляции это отношение определяет вероятность ошибки на выходе демодулятора;

Рш – мощность тепловых шумов на входе демодулятора;

– отношение сигнал/шум на входе приемника;

П – шумовая полоса приемника;

В –полоса частот, в которой сосредоточена энергия элемента сигнала длительностью Т (численно равна скорости передачи информации).

Во многих случаях П= 1/Т и тогда

. (10.3)

Из этого выражения получаем:

; (10.4)

 

,

где n– коэффициент шума приемника;

k – постоянная Больцмана;

П - шумовая полоса приемника;

То = 293оК.

Как правило, Рс (или Кс) приводят для ВЕR= 10-3 или ВЕR = 10-6.

Метод модуляции определяет ширину излучаемого спектра, и следовательно, ширину полосы приемопередатчика и пороговое отношение сигнал/шум в демодуляторе.

В настоящее время в низкоскоростных ЦРРС наибольшее распространение получила модуляция QРSK (квадратурная фазовая манипуляция), которая позволяет вдвое уменьшить ширину спектра модулированного сигнала по сравнению с двухпозиционной PSK. Известны несколько модификаций QРSK: офсетная – QРSK, с постоянной огибающей СЕРМ или С-QРSK, 4 QАМ и др., отличающиеся методами реализации.

Некоторые зарубежные фирмы применяют более простой метод 4 FSK, обеспечивающий такую же занимаемую полосу частот, что и QРSK, но за счет снижения энергетики.

Для многих скоростей передачи применяются наиболее простые методы модуляции – PSK и FSK.

В последнее время для скорости 34 Мбит/с наметилась тенденция замены QРSK на 16 QАМ в диапазонах ниже 13 ГГц с целью уменьшения занимаемой полосы ствола РРЛ до 14 МГц вместо 28 МГц при QРSK.

Надёжность радиорелейного оборудования

Надежность обычно характеризуется параметром средней наработки на отказ (МТВF) для конфигурации “1+0”. Все ведущие фирмы гарантируют МТВF не менее 100000 часов (более 10 лет).

Уровень принятых схемотехнических решений оценивается по параметру RBER (остаточный коэффициент ошибок), который характеризует ошибки, связанные только с аппаратурой (вне связи с линией). Для качественных современных станций типовое значение этого параметра 10-11.

 

Обычно энергопотребление приводится в расчете на один ствол в конфигурации “1+0”. Для современной аппаратуры эта величина лежит в пределах 35-50 Вт.

При питании от сети постоянного тока важной характеристикой является наличие гальванической развязки, что позволяет снизить влияние помех по сети, а также использовать сеть любой полярности. Другой важный параметр – допустимый диапазон питающих напряжений без каких-либо переключений. Для современных станций эта величина составляет от 20 до 70 В.

В настоящее время аппаратуру ЦРРС производят в виде двух составных частей: аппаратуры наружного размещения, включающей в себя выносные приемо-передающие модули (ODU) и антенну, и аппаратуры внутреннего размещения (IDU), исполняемой обычно в виде модульной конструкции, которую можно установить на столе, закрепить на стене и т.д.

Соединение между ODU и IDU осуществляют коаксиальными кабелями длиной до 300м (реже 600м), по которым также передается напряжение дистанционного питания ODU.

В большинстве новых зарубежных ЦРРС при соединении ODU и IDU используется всего один кабель, по которому сигналы “вверх” и “вниз” передаются на разных поднесущих. В отечественных ЦРРС применяют два кабеля.

Перенос приемо-передатчиков цифровых РРС с “земли” на антенну первоначально имел целью избавиться от дорогих и громоздких волноводных трактов. Однако конструктивное деление РРС на ODU и IDU привело к трансформации функциональной структуры станций, к изменению электрических схем ODU и IDU.

В настоящее время в ODU размещают все элементы, зависящие от диапазона и рабочих частот, но инвариантные к изменению скорости передачи от Е1 до Е3 (Ericsson) или от Е1 до Е2 (Pasolink), а IDU содержит лишь элементы, определяющие трафик и стыки. Поэтому блок IDU одинаково подходит для всех диапазонов от 7 до 38 ГГц.

Удобство обслуживающие ЦРРС во многом определяется конструкцией антенного комплекса (ODU, антенна, опорно-поворотное устройство), способами соединения ODU с антенной и крепления антенны к мачте, а также методом юстировки антенны.

 

Рисунок 10.1 – Структурная схема блока БУКС

 

 

 

1 – частотный дуплексер; 2 – приемный конвертор; 3 – усилитель мощности; 4 – синтезатор частот; 5 – тракт ПЧ и демодулятор; 6 – цифровой интерфейс; 7 – микроконтроллер; 8 – вторичный источник питания.

 

Рисунок 10.2 – Структурная схема приемопередатчика

В части удобства обслуживания отечественные ЦРРС имеют и “плюсы” и “минусы”. Так, их недостатком является более сложная и металллоемкая конструкция соединения ODU c антенной, особенно для больших антенн (диаметром более 1,2 м). Однако для суровых климатических районов России наши ЦРРС предусматривают дополнительную защиту от снега и льда в виде контейнера, внутри которого размещают ODU.

Исправная ЦРРС не требует обслуживания, кроме профилактических мероприятий. В случае выхода из строя ODU, его заменяют на исправный, а восстановление производят на заводе-изготовителе, либо в специализированных сервисных центрах. При выходе из строя наземного блока ремонт производится заменой ячеек из ЗИП.

На рисунках 10.1 и 10.2 приведены структурные схемы блока БУКС и приемопередатчика аппаратуры МИК. На рисунке 10.3 приведен вариант схемы организации связи.

 

 

Рисунок 10.3 – Пример схемы организации связи

 




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 869; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.025 сек.