Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Множества мощности континуума и выше




Примеры несчетных множеств

Рассмотренные примеры и свойства могут создать впечатление, что все бесконечные множества счетны. Однако, это далеко не так, и для доказательства этого достаточно построить контрпример, т.е. предъявить бесконечное множество, не являющееся счетным.

Теорема 2.1. Множество всех бесконечных бинарных последовательностей, т.е. состоящих из 0 и 1, несчетно.

Доказательство. Предположим противное, т.е. что эти последовательности можно занумеровать. Пусть P1, P2,... – последовательности, где

P1 = {a11, a12, a13,...}, P2 = {a21, a22, a23,...}

и т.д., где аij = 0 или аij = 1.

Построим последовательность P, не содержащуюся в этом списке. Такая последовательность существует, например, P ={1– a11, 1–a22, 1–a33,...}. Очевидно, что ее элементы равны 0 или 1, причем она не равна никакой другой последовательности из списка, потому что отличается от P1 по крайней мере первым элементом, от P2 – по крайней мере вторым и т.д. Таким образом, построенная последовательность отличается от любой из занумерованных последовательностей хотя бы одним элементом. Следовательно, множество всех бинарных последовательностей занумеровать невозможно, а это означает, что оно несчетно.

Другим важным примером бесконечного несчетного множества является множество вещественных (действительных) чисел R.

Перечислим основные свойства действительных чисел.

1. Любое вещественное число можно представить конечной или бесконечной десятичной дробью. И обратно, для любой десятичной дроби существует вещественное число, которое она представляет.

2. Множество вещественных чисел является непрерывным, т.е. оно сплошь заполняет числовую ось.

Задание. Доказать, что множество вещественных чисел несчетно. Указание: воспользоваться способом доказательства несчетности множества бинарных последовательностей.

 

Для мощности множества вещественных чисел R есть специальное обозначение – с. Любое множество, имеющее такую мощность называется континуумом (от английского continue – продолжаться).

Введение понятия мощность континуума порождает два вопроса.

1. Существует ли множество мощностью больше чем с?

2. Существует ли множество промежуточной мощности между счетным и континуумом?

На первый взгляд, если отрезок прямой имеет мощность континуума, то множеством мощности больше с является любая плоская фигура, например, квадрат. Однако, это не так и справедлива

Теорема 2.2. Открытый единичный квадрат на плоскости имеет мощность равную с.

Доказательство. Построим отображение f точек квадрата на его сторону. Возьмем любую точку внутри квадрата с координатами (x, y). Пусть в десятичном представлении x = 0,a1a2a3..., а y = 0,b1b2b3.... Образуем число z = f(x, y) = = 0,a1b1a2b2a3b3..., которое является координатой точки на стороне квадрата. Таким образом, мы отобразим точки квадрата на его сторону.

Возьмем две различные точки квадрата А = (x1, y1) и B = (x2, y2) и определим zA = f(A), zB = f(B). Ясно, что при А ≠ В либо x1 ¹ x2 либо y1 ¹ y2, А раз так, то эти числа отличаются хотя бы одним десятичным знаком, и значит zA ¹ zB. Значит, две разные точки A и B квадрата отображаются в две разные точки на отрезке прямой. Поэтому отображение f инъективно.

Инъективность означает, что точек в квадрате не больше, чем на отрезке. С другой стороны, их не может быть меньше, поскольку отрезок является подмножеством квадрата. Следовательно, построенное отображение f взаимно однозначно.

Тем не менее, множества мощности выше континуума существуют, более того, справедлива

Теорема 2.3. Для любого множества А существует множество В большей мощности.

Доказательство. Пусть имеется множество А. Рассмотрим множество В, являющееся множеством всех функций, определенных в точках множества А и равных 0 или 1в этих точках. Покажем, что мощность множества В больше мощности А.

Рассмотрим на множестве А функцию из B, определенную по правилу

где aÎА. Поставим каждой точке аÎА в соответствие функцию fa(x)ÎВ и рассмотрим полученное множество

B1 = { fa(x)ÎB | aÎA }Ì B.

Очевидно, что нами установлено взаимно однозначное отображение А «В1. Следовательно, | A | = | B1 |, а значит | A | £ | B |. Покажем, что | A | ¹ | B|. Это эквивалентно тому, что не существует взаимно однозначного отображения А на все В.

Предположим противное, что существует биективное отображение j: А ® В, которое каждому аÎА ставит в соответствие элемент bÎВ и обратно, каждой функции из B – элемент множества A. Обозначим j(a) = f(a)(x), и рассмотрим функцию

g(x) = 1 – f(а)(x).

По свойствам элементов множества В имеем, что значение f(а)(x) равно 0 или 1, тогда это свойством обладает и функция g(x). Следовательно, g(x)ÎВ. Значит, по предположению, существует такая точка bÎА, что ей однозначно соответствует g(x), т.е. g(x) = f(b)(x). Возьмем х = b, тогда получим

g(b) = 1 – f(b)(b) = f(b)(b).

Отсюда f(b)(b)=1/2, что противоречит условию принадлежности функции f(b)(x) множеству В.

Поэтому, такого отображения j не существует. Значит, | A | £ | B | и | A | ¹ | B|, т.е. мощность В строго больше мощности А.

Из теоремы следует, что множества самой большой мощности не существует.

Эквивалентный способ построения множества большей мощности, чем А получим, если определим B как множество, элементами которого являются всевозможные подмножества множества A. Множество всех подмножеств некоторого множества A называется булеаном и обозначается 2A (2A={ C | C Í A}). Тогда m(2A) = 2|A|.

Множество, мощность которого равна 2c, называется множеством мощности гиперконтинуума.

Что касается проблемы существования множества промежуточной мощности, то оказалось, что это утверждение невозможно доказать на основе аксиом теории множеств, но оно и не противоречит им.

 

 

Тема 3. Нечеткие множества




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 3644; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.006 сек.