Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие требования. Лекция 5.Вычислительные системы - общие сведения




Введение

Лекция 5.Вычислительные системы - общие сведения

Один из основателей и глава компании Intel Гордон Мур в 1965 году сформулировал статистическую закономерность, названную позднее – законом Мура:

«Число транзисторов на чипе и производительность компьютеров возрастает вдвое каждые 18 месяцев».

Закон Мура связан с тем, что некоторые экономисты называют эффективным циклом. Действительно, увеличение производительности машин приводит к падению цен, это вызывает появление новых прикладных программ (никому не приходило в голову разрабатывать компьютерные игры для машин стоимостью 10 млн. долларов). Новые прикладные программы – новые рынки – появление новых компаний – повышение конкуренции – понижение цены – новое качество. И над всем этим его величество – потребитель, который предъявляет свои требования к продукту, которые постоянно растут.

Для лучшего представления закона Мура приведем некоторые факты: 45 нм — это много или мало? Так, первый транзистор, созданный исследователями Bell Labs в 1947 году, помещался на ладони, в то время как новый 45-нм транзистор Intel в 400 раз меньше красной кровяной клетки человека. И если бы удалось в такой же степени, как транзисторы, уменьшить жилой дом, мы не смогли бы разглядеть его невооруженным глазом. Увидеть 45-нм транзистор можно только при помощи самого современного микроскопа. Такой транзистор, входящий в состав готовящегося к выпуску процессора нового поколения с кодовым названием Penryn, будет примерно в миллион раз дешевле, чем транзистор образца 1968 года. И если бы цены на автомобили упали пропорционально, сегодня новый автомобиль стоил бы около 1 цента. 45-нм транзистор способен включаться и выключаться примерно 300 млрд раз в секунду. За время, необходимое ему для включения или выключения, луч света проходит меньше 2,5 мм.

К современным компьютерам и вычислительным системам предъявляются следующие требования:

· Отношение стоимость/производительность

· Надежность и отказоустойчивость

· Масштабируемость

· Совместимость и мобильность программного обеспечения

Отношение стоимость/производительность

Начнем с очевидного. Суперкомпьютеры – приоритет производительность, стоимостные характеристики на втором плане. Персональные компьютеры – на первом месте стоимостные характеристики, производительность на втором плане.

Между этими двумя крайними направлениями находятся конструкции, основанные на отношении стоимость/ производительность, в которых разработчики находят баланс между стоимостными параметрами и производительностью. Типичными примерами такого рода компьютеров являются миникомпьютеры и рабочие станции.

Производительность

Зачастую производительность вычислительной машины подменяют термином быстродействие и при этом считают, что производительность это – среднестатистическое число операций (кроме операций ввода/вывода), выполняемых машиной в единицу времени. Не вдаваясь в тонкости классификации примем этот подход. Различают пиковую производительность – производительность процессора без учета времени обращения к оперативной памяти; номинальную – производительность процессора с учетом обращений к ОП; системную – общее время выполнения задания с учетом базовых технических и программных средств.

Пиковая производительность компьютера вычисляется однозначно, и эта характеристика является базовой, по которой производят сравнение высокопроизводительных вычислительных систем. Чем больше пиковая производительность, тем теоретически быстрее пользователь сможет решить свою задачу. Пиковая производительность есть величина теоретическая и, вообще говоря, не достижимая при запуске конкретного приложения. Реальная же производительность, достигаемая на данном приложении, зависит от взаимодействия программной модели, в которой реализовано приложение, с архитектурными особенностями машины, на которой приложение запускается.

В качестве единиц измерения используются:

· MIPS (Million Instruction Per Second) – миллион целочисленных операций в секунду;

· MFLOPS (Million Floating Operations Per Second) – миллион операций над числами с плавающей запятой в секунду, ну и конечно их производные T, G,…

Системная производительность измеряется с помощью синтезированных тестовых

программ. Результаты оценки ЭВМ конкретной архитектуры приводятся относительно базового образца.

Надежность

Важнейшей характеристикой вычислительных систем является надежность. Повышение надежности основано на принципе предотвращения неисправностей путем снижения интенсивности отказов и сбоев за счет применения электронных схем и компонентов с высокой и сверхвысокой степенью интеграции, снижения уровня помех, облегченных режимов работы схем, обеспечение тепловых режимов их работы, а также за счет совершенствования методов сборки аппаратуры.

Отказоустойчивость - это такое свойство вычислительной системы, которое обеспечивает ей, как логической машине, возможность продолжения действий, заданных программой, после возникновения неисправностей. Введение отказоустойчивости требует избыточного аппаратного и программного обеспечения.

Масштабируемость

Масштабируемость представляет собой принципиальную возможность бесконфликтного изменения конфигурации компьютера в процессе эксплуатации, адаптируя его к конкретным условиям эксплуатации. Масштабируемость должна обеспечиваться архитектурой и конструкцией компьютера, а также соответствующими средствами программного обеспечения.

Добавление каждого нового процессора в действительно масштабируемой системе должно давать прогнозируемое увеличение производительности и пропускной способности при приемлемых затратах. Одной из основных задач при построении масштабируемых систем является минимизация стоимости расширения компьютера и упрощение планирования. В идеале добавление процессоров к системе должно приводить к линейному росту ее производительности. Однако это не всегда так. Потери производительности могут возникать, например, при недостаточной пропускной способности шин из-за возрастания трафика между процессорами и основной памятью, а также между памятью и устройствами ввода/вывода. В действительности реальное увеличение производительности трудно оценить заранее, поскольку оно в значительной степени зависит от динамики поведения прикладных задач.

Совместимость

Совместимость проявляется на аппаратном и программном уровнях. Аппаратная совместимость дает возможность комплексировать аппаратуру разных производителей, что предполагает унификацию разъемов, электрических параметров и логики сигналов различных устройств. Программная совместимость обеспечивает работоспособность программы, написанной для одного компьютера, на другом без какой либо перекомпиляции и редактирования.

Концепция программной совместимости впервые в широких масштабах была применена разработчиками системы IBM/360. Основная задача при проектировании всего ряда моделей этой системы заключалась в создании такой архитектуры, которая была бы одинаковой с точки зрения пользователя для всех моделей системы независимо от цены и производительности каждой из них. Огромные преимущества такого подхода, позволяющего сохранять существующий задел программного обеспечения при переходе на новые (как правило, более производительные) модели были быстро оценены как производителями компьютеров, так и пользователями и начиная с этого времени практически все фирмы-поставщики компьютерного оборудования взяли на вооружение эти принципы, поставляя серии совместимых компьютеров. Следует заметить однако, что со временем даже самая передовая архитектура неизбежно устаревает и возникает потребность внесения радикальных изменений в архитектуру и способы организации вычислительных систем.

Классификация компьютеров по областям применения

Задача классификации чрезвычайно затруднительна хотя бы в силу своей многовариантности, тем не менее попробуем это сделать выбрав в качестве критерия сферу применения компьютеров и стоимость.

 

Теперь мы можем более подробно остановится на наиболее распространенных типах компьютеров.




Поделиться с друзьями:


Дата добавления: 2014-01-11; Просмотров: 1477; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.019 сек.