Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Линейная модель обмена (модель международной торговли)

Модель Леонтьева (основная задача межотраслевого баланса)

ВЕКТОРЫ И СИСТЕМЫ ЛИНЕЙНЫХ УРАВНЕНИЙ В ЭКОНОМИКЕ

 

Пусть в стране работает n отраслей народного хозяйства(n Î N): S1, S2, ..., Si, ..., Sn.

Продукция каждой отрасли используется тремя способами:

- внутри самой отрасли,

- в других отраслях,

- как конечный продукт, направляемый на продажу внутри и вне страны.

Пусть известны также затраты отрасли Si, потребные отрасли Sj для выпуска одной единицы своей продукции, и пусть они равны aij, (i = 1, 2, ..., n; j = 1, 2, ..., n). Это значит, что задана квадратная матрица n-го порядка (An x n), которую называют матрицей прямых затрат:

.

Основную задачу межотраслевого баланса (модель Леонтьева) можно сформулировать следующим образом.

Требуется определить необходимый объем выпуска продукции каждой отрасли так, чтобы обеспечить в каждой отрасли запланированный объем выпуска конечного продукта.

Если bi - запланированный объем выпуска конечного продукта в отрасли Si, то весь конечный продукт можно задать

вектором Вnx1, который называют вектором конечного продукта по отраслям: .

 

Пусть xi - искомый объем выпуска отрасли Si, тогда объем выпуска по отраслям можно задать вектором валового выпуска

по отраслям: .

В этих обозначениях задача имеет вид :

.

Уравнение называют моделью Леонтьева.

Ясно, что все матрицы в модели Леонтьева имеют только неотрицательные элементы.

Матричное уравнение (*) можно записать также в виде системы n линейных уравнений с n неизвестными. Матрица этой системы Q = E - A. Если матрица S - невырожденная, то система (*) имеет единственное решение:

.

Матрицу Q-1 называют матрицей полных затрат.Каждый j-й столбец этой матрицы показывает затраты на производство единицы конечного продукта соответствующей отрасли.

Модель Леонтьева (*) и матрицу ее прямых затрат (А) называют продуктивными, если для любого вектора конечных продуктов найдется вектор необходимого выпуска продукции по отраслям .

Критерии продуктивности:

Пример.

Допустим, что имеются всего две отрасли народного хозяйства (n=2) : энергетика и машиностроение. Энергетика запланировала валовый выпуск конечного продукта на сумму 144 млн рублей, а машиностроение - на сумму 123 млн рублей. Каждый млн. рублей валового выпуска конечной продукции энергетической отрасли требует 0,07 млн. рублей затрат валового выпуска своей отрасли и 0,12 млн. рублей затрат валового выпуска отрасли машиностроения. Каждый млн. рублей валового выпуска конечной продукции отрасли машиностроения требует 0,14 млн. рублей и 0,10 млн. рублей от энергетики и машиностроения. Требуется определить валовый выпуск продукции по отраслям, обеспечивающий запланированный валовый выпуск готового продукта. Из условий задачи следует, что вектор конечного продукта , матрица прямых затрат , единичная матрица , искомый вектор валового выпуска по отраслям .



Критерии продуктивности выполняются, следовательно, для решения этой задачи можно использовать модель Леонтьева : .

В условиях решаемой задачи получим:

.

Ответ: При данной матрице прямых затрат валовый выпуск конечного продукта в энергетике в объеме 144 млн. рублей, а в машиностроении в объеме 123 млн. рублей можно обеспечить, если общий валовый выпуск в энергетике будет 179 млн. рублей, а в машиностроении - 160,5 млн. рублей

 

 

Рассмотрим n стран (n Î N): S1, S2, ..., Si, ..., Sn с известным национальным доходом x1, x2,..., xi, ..., xn соответственно.

Пусть aij - запланированная доля национального дохода страны Sj на покупку товаров у страны Si, (). Числа aij можно записать в виде матрицы

.

 

В этой задаче квадратную матрицу А называют структурной матрицей торговли.

Будем считать, что весь национальный доход каждой страны Si используется только на закупку товаров либо внутри самой страны (), либо на импорт из других стран () . Естественно, что в матрице А элементы неотрицательны и в каждом столбце сумма всех элементов равна единице.

Из перечисленных выше условий следует, что сбалансированная торговля возможна только при условии.

При получим систему линейных уравнений, которую в матричной форме можно записать как (*) ,

где А -структурная матрица торговли, а - вектор национальных доходов по странам.

Из уравнения следует, что вектор Х можно рассматривать, как собственный вектор матрицы А с собственным числом . Следовательно, только собственный вектор структурной матрицы торговли с собственным числом даст национальные доходы стран, обеспечивающие сбалансированность торговли.

Пример. Дана структурная матрица торговли трех стран: .

Определить, при каких национальных доходах этих стран торговля между ними будет сбалансированной.

Найдем собственный вектор матрица А при . Для этого достаточно найти вектор Х из матричного уравнения . . .

После умножения всех уравнений на 12 расширенная матрица этой системы будет иметь вид: .

Метод полного исключения приводит к результатам:

.

Получили однородную систему двух линейных уравнений с тремя неизвестными. Однородная система всегда разрешима. Количество неизвестных равно 3, а ранг расширенной матрицы и матрицы системы равен 2, следовательно, система имеет бесчисленное множество решений, зависящих от оного параметра ( 3-2=1 ) . Пусть x1 =4t, тогда x2 =9t, x3 = 8t, где t - параметр. Это означает, что при данной структурной матрице торговля будет сбалансированной только при условии, что отношение национальных доходов этих стран будет равно 4 : 9 : 8 .

<== предыдущая лекция | следующая лекция ==>
| Линейная модель обмена (модель международной торговли)

Дата добавления: 2014-01-11; Просмотров: 628; Нарушение авторских прав?;


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



ПОИСК ПО САЙТУ:


Читайте также:



studopedia.su - Студопедия (2013 - 2017) год. Не является автором материалов, а предоставляет студентам возможность бесплатного обучения и использования! Последнее добавление ‚аш ip: 54.80.29.228
Генерация страницы за: 0.088 сек.