Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Теорема Вейерштрасса 2




Наибольшее и наименьшее значения функции, непрерывной на сегменте, достигаются в некоторых точках этого сегмента, т.е. .

Контрпример.

Здесь

,

,

но , т.е. не является функцией, непрерывной на .

Доказательство. По теореме 1 множество – ограниченное, поэтому имеет грани. Пусть

.

Пусть , . Тогда выделяется последовательность значений аргументов на , для которой при любом .

Из ограниченной последовательности выделяем сходящуюся подпоследовательность , т.е. .

Поскольку для каждого и
при , то по теореме о пределе промежуточной функции имеем .

Аналогично доказывается , .

Теорема устанавливает достаточные условия существования абсолютного (глобального) экстремума на для непрерывной функции , .




Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 508; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.007 сек.