Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Предел функции. Теорема Гейне




Рассмотрим функцию , определенную на множестве . Пусть . Точка называется предельной или точкой сгущения множества , если в любой окрестности этой точки найдутся точки множества, отличные от . В этом случае из множества можно выделить последовательность , сходящуюся к . К числу предельных точек можно отнести внутренние точки множества, входящие в состав вместе с некоторой окрестностью. Очевидно, что в общем случае точка сгущения может оказаться не внутренней. В качестве примера можно привести множество рациональных чисел , все точки которого в любой окрестности содержат кроме рациональных чисел и иррациональные, которые в не входят.

Множество называется замкнутым, если оно содержит все свои предельные точки, и множество называется открытым, если оно состоит из одних внутренних точек.

Функция , определенная на множестве имеет предел в точке сгущения : если для любого найдется такое , что при .

Указанное определение опирается на понятие функции и именуется определением предела по Коши.

Существует эквивалентное определение предела, вытекающее из теоремы Гейне.

Эта теорема сводит понятие предела функции к пределу сходящихся последовательностей значений функции , задаваемых для различных последовательностей , стремящихся к . Можно легко показать, что при любом выборе последовательности , если существует предел соответствующих последовательностей , то этот предел единственен.

Функцию, имеющую предел не следует путать с ограниченной функцией. Функция , имеющая предел при , ограничена в некоторой окрестности точки . Обратное утверждение не верно: ограниченная функция может не иметь предела.

Пределы обладают следующими свойствами:

q Если – есть постоянная функция, то ;

q Если существуют , и в некоторой окрестности точки функция ограничена, т.е. , тогда .

q Если существуют и при каком-то условии, то (при том же условии). Это свойство справедливо для любого конечного числа функций;

q Если существуют и при каком-то условии, то (при том же условии). Это свойство также справедливо для любого конечного числа функций, в частности, справедлива формула ;

q Если существуют и при каком-то условии, то (при том же условии).

q Если и существуют , и , то .

 




Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 2533; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.