Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Хэш-функции и хэш-адресация

Построение таблиц идентификаторов по методу бинарного дерева

Простейшие методы построения таблиц идентификаторов

Принципы организации таблиц идентификаторов

Организация таблиц символов компилятора.

При выполнении семантического анализа, генерации кода и оптимизации результирующей программы компилятор должен оперировать характеристиками основных элементов исходной программы — переменных, констант, функций и других лексических единиц входного языка. Эти характеристики могут быть получены компилятором на этапе синтаксического анализа входной программы (чаще всего при анализе структуры блоков описаний переменных и констант), а также дополнены на этапе подготовки к генерации кода (например, при распределении памяти).

Набор характеристик, соответствующий каждому элементу исходной программы, зависит от типа этого элемента, от его смысла (семантики) и, соответственно, от той роли, которую он исполняет в исходной и результирующей программах. В каждом конкретном случае этот набор характеристик может быть свой в зависимости от синтаксиса и семантики входного языка, от архитектуры целевой вычислительной системы и от структуры компилятора. Но есть типовые характеристики, которые чаще всего присущи тем или иным элементам исходной программы. Например, для переменной — это ее тип и адрес ячейки памяти, для константы — ее значение, для функции — количество и типы формальных аргументов, тип возвращаемого результата, адрес вызова кода функции.

Главной характеристикой любого элемента исходной программы является его имя. Именно с именами переменных, констант, функций и других элементов входного языка оперирует разработчик программы — поэтому и компилятор должен уметь анализировать эти элементы по их именам.

Имя каждого элемента должно быть уникальным. Многие современные языки программирования допускают совпадения (неуникальность) имен переменных и функций в зависимости от их области видимости и других условий исходной программы. В этом случае уникальность имен должен обеспечивать сам компилятор.

Таким образом, задача компилятора заключается в том, чтобы хранить некоторую информацию, связанную с каждым элементом исходной программы, и иметь доступ к этой информации по имени элемента. Для решения этой задачи компилятор организует специальные хранилища данных, называемые таблицами идентификаторов, или таблицами символов.

Компилятор пополняет записи в таблице идентификаторов по мере анализа исходной программы и обнаружения в ней новых элементов, требующих размещения в таблице. Поиск информации в таблице выполняется всякий раз, когда компилятору необходимы сведения о том или ином элементе программы. Причем следует заметить, что поиск элемента в таблице будет выполняться компилятором существенно чаще, чем помещение в нее новых элементов.

Так происходит потому, что описания новых элементов в исходной программе, как правило, встречаются гораздо реже, чем эти элементы используются. Кроме того, каждому добавлению элемента в таблицу идентификаторов в любом случае будет предшествовать операция поиска — чтобы убедиться, что такого элемента в таблице нет.

На каждую операцию поиска элемента в таблице компилятор будет затрачивать время, и поскольку количество элементов в исходной программе велико (от единиц до сотен тысяч в зависимости от объема программы), это время будет существенно влиять на общее время компиляции. Поэтому таблицы идентификаторов должны быть организованы таким образом, чтобы компилятор имел возможность максимально быстро выполнять поиск нужной ему записи таблицы по имени элемента, с которым связана эта запись.

Можно выделить следующие способы организации таблиц идентификаторов:

· простые и упорядоченные списки;

· бинарное дерево;

· хэш-адресация с рехешированием;

· хэш-адресация по методу цепочек;

· комбинация хэш-адресации со списком или бинарным деревом.

 

В простейшем случае таблица идентификаторов представляет собой линейный неупорядоченный список, или массив, каждая ячейка которого содержит данные о соответствующем элементе таблицы. Размещение новых элементов в такой таблице выполняется путем записи информации в очередную ячейку массива или списка по мере обнаружения новых элементов в исходной программе.

Поиск нужного элемента в таблице будет в этом случае выполняться путем по­следовательного перебора всех элементов и сравнения их имени с именем искомого элемента, пока не будет найден элемент с таким же именем. Тогда если за единицу времени принять время, затрачиваемое компилятором на сравнение двух строк (в современных вычислительных системах такое сравнение чаще всего выполняется одной командой), то для таблицы, содержащей N элементов, в среднем будет выполнено N/2 сравнений.

Время, требуемое на добавление нового элемента в таблицу (Тд), не зависит от числа элементов в таблице (N). Но если N велико, то поиск потребует значительных затрат времени. Время поиска (Тн) в такой таблице можно оценить как Тн = О (N). Поскольку именно поиск в таблице идентификаторов является наиболее часто выполняемой компилятором операцией, такой способ организации таблиц идентификаторов является неэффективным. Он применим только для самых простых компиляторов, работающих с небольшими программами.

Поиск может быть выполнен более эффективно, если элементы таблицы отсортированы (упорядочены) естественным образом. Поскольку поиск осуществля­ется по имени, наиболее естественным решением будет расположить элементы таблицы в прямом или обратном алфавитном порядке. Эффективным методом поиска в упорядоченном списке из N элементов является бинарный, или логарифмический, поиск.

Алгоритм логарифмического поиска заключается в следующем: искомый символ сравнивается с элементом (N+ 1)/2 в середине таблицы; если этот элемент не является искомым, то мы должны просмотреть только блок элементов, пронумерованных от 1 до (N + 1)/2 - 1, или блок элементов от (N + 1)/2 + 1 до N в зависимости от того, меньше или больше искомый элемент того, с которым его сравнили. Затем процесс повторяется над нужным блоком в два раза меньшего размера. Так продолжается до тех пор, пока либо искомый элемент не будет найден, либо алгоритм не дойдет до очередного блока, содержащего один или два элемента (с которыми можно выполнить прямое сравнение искомого элемента).

 

Можно сократить время поиска искомого элемента в таблице идентификаторов, не увеличивая значительно время, необходимое на ее заполнение. Для этого надо отказаться от организации таблицы в виде непрерывного массива данных.

Существует метод построения таблиц, при котором таблица имеет форму бинарного дерева. Каждый узел дерева представляет собой элемент таблицы, причем корневым узлом становится первый элемент, встреченный компилятором при заполнении таблицы. Дерево называется бинарным, так как каждая вершина в нем может иметь не более двух ветвей. Для определенности будем называть две ветви «правая» и «левая». Первый идентификатор помещается в вершину дерева. Все дальнейшие идентификаторы попадают в дерево по некоторому алгоритму [5 ].

В реальных исходных программах количество идентификаторов столь велико, что даже логарифмическую зависимость времени поиска от их числа нельзя признать удовлетворительной. Необходимы более эффективные методы поиска информации в таблице идентификаторов. Лучших результатов можно достичь, если применить методы, связанные с использованием хэш-функций и хэш-адресации.

Хэш-функцией F называется некоторое отображение множества входных элементов R на множество целых неотрицательных чисел Z: F(r) =n, r ÎR, n Î Z. Сам термин «хэш-функция» происходит от английского термина «hash function» (hash — «мешать», «смешивать», «путать»).

Множество допустимых входных элементов R называется областью определения хэш-функции. Множеством значений хэш-функции F называется подмножество М из множества целых неотрицательных чисел Z: М ÍZ, содержащее все возможные значения, возвращаемые функцией F: "r|R: F(r) Î М и "m Î М: $r Î R: F(r) = m. Процесс отображения области определения хэш-функции на множество значений называется хэшированием.

При работе с таблицей идентификаторов хэш-функция должна выполнять отображение имен идентификаторов на множество целых неотрицательных чисел. Областью определения хэш-функции будет множество всех возможных имен идентификаторов.

Хэш-адресация заключается в использовании значения, возвращаемого хэш-функцией, в качестве адреса ячейки из некоторого массива данных. Тогда размер массива данных должен соответствовать области значений используемой хэш-функции.

Следовательно, в реальном компиляторе область значений хэш-функции никак не должна превышать размер доступного адресного пространства компьютера.

Метод организации таблиц идентификаторов, основанный на использовании хэш- адресации, заключается в помещении каждого элемента таблицы в ячейку, адрес которой возвращает хэш-функция, вычисленная для этого элемента. Тогда в идеальном случае для помещения любого элемента в таблицу идентификаторов достаточно только вычислить его хэш-функцию и обратиться к нужной ячейке массива данных. Для поиска элемента в таблице также необходимо вычислить хэш- функцию для искомого элемента и проверить, не является ли заданная ею ячейка массива пустой (если она не пуста — элемент найден, если пуста — не найден). Первоначально таблица идентификаторов должна быть заполнена информацией, которая позволила бы говорить о том, что все ее ячейки являются пустыми. Этот метод весьма эффективен, поскольку как время размещения элемента в таблице, так и время его поиска определяются только временем, затрачиваемым на вычисление хэш-функции, которое в общем случае несопоставимо меньше времени, необходимого для многократных сравнений элементов таблицы.

Метод имеет два очевидных недостатка. Первый из них — неэффективное ис­пользование объема памяти под таблицу идентификаторов: размер массива для ее хранения должен соответствовать всей области значений хэш-функции, в то время как реально хранимых в таблице идентификаторов может быть существенно меньше. Второй недостаток — необходимость соответствующего разумного выбора хэш-функции. Этот недостаток является настолько существенным, что не позволяет непосредственно использовать хэш-адресацию для организации таблиц идентификаторов.

Проблема выбора хэш-функции не имеет универсального решения. Хэширование обычно происходит за счет выполнения над цепочкой символов некоторых простых арифметических и логических операций. Самой простой хэш-функцией для символа является код внутреннего представления в компьютере литеры символа. Эту хэш-функцию можно использовать и для цепочки символов, выбирая первый символ в цепочке.

Очевидно, что такая примитивная хэш-функция будет неудовлетворительной: при ее использовании возникнет проблема — двум различным идентификаторам, начинающимся с одной и той же буквы, будет соответствовать одно и то же значение хэш-функции. Тогда при хэш-адресации в одну и ту же ячейку таблицы идентификаторов должны быть помещены два различных идентификатора, что явно невозможно. Такая ситуация, когда двум или более идентификаторам соответствует одно и то же значение хэш-функции, называется коллизией.

Естественно, что хэш-функция, допускающая коллизии, не может быть использована для хэш-адресации в таблице идентификаторов. Причем достаточно получить хотя бы один случай коллизии на всем множестве идентификаторов, чтобы такой хэш-функцией нельзя было пользоваться. Но возможно ли построить хэш- функцию, которая бы полностью исключала возникновение коллизий? Для полного исключения коллизий хэш-функция должна быть взаимно однозначной: каждому элементу из области определения хэш-функции должно соответство­вать одно значение из ее множества значений, и наоборот — каждому значению из множества значений этой функции должен соответствовать только один элемент из ее области определения. Тогда любым двум произвольным элементам из области определения хэш-функции будут всегда соответствовать два различных ее значения. Теоретически для идентификаторов такую хэш-функцию построить можно, так как и область определения хэш-функции (все возможные имена идентификаторов), и область ее значений (целые неотрицательные числа) являются бесконечными счетными множествами, поэтому можно организовать взаимно однозначное отображение одного множества на другое.

Но на практике существует ограничение, делающее создание взаимно однозначной хэш-функции для идентификаторов невозможным. Дело в том, что в реальности область значений любой хэш-функции ограничена размером доступного адресного пространства компьютера. Множество адресов любого компьютера с традиционной архитектурой может быть велико, но всегда конечно, то есть ограничено. Организовать взаимно однозначное отображение бесконечного множества на конечное даже теоретически невозможно. Можно, конечно, учесть, что длина принимаемой во внимание части имени идентификатора в реальных ком­пиляторах на практике также ограничена — обычно она лежит в пределах от 32 до 128 символов (то есть и область определения хэш-функции конечна). Но и тогда количество элементов в конечном множестве, составляющем область определения хэш-функции, будет превышать их количество в конечном множестве области ее значений (количество всех возможных идентификаторов больше количества допустимых адресов в современных компьютерах). Таким образом, создать взаимно однозначную хэш-функцию на практике невозможно. Следовательно, невозможно избежать возникновения коллизий.

Поэтому нельзя организовать таблицу идентификаторов непосредственно на основе одной только хэш-адресации. Но существуют методы, позволяющие использовать хэш-функции для организации таблиц идентификаторов даже при наличии коллизий.

Это

· хэш-адресация с рехешированием;

· хэш-адресация по методу цепочек;

  • комбинация хэш-адресации со списком или бинарным деревом

О них на практическом занятии.

 

Выводы:

На сегодняшней лекции был рассмотрен целый ряд основополагающих определений из теории формальных грамматик, классификация языков и грамматик и алгоритмы преобразований. Знания, полученные на лекции, будут использованы при рассмотрении вопросов построения трансляторов.

 

Преподаватель Газина О.В.

 

<== предыдущая лекция | следующая лекция ==>
Основные понятия и определения. по дисциплине Системное программное обеспечение | Электронография
Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 1999; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.