Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Общие сведения о методах наблюдения




Мониторинг антропогенных изменений окружающей природной среды

 

В данном разделе рассмотрена классификация видов мониторинга, в которой за основу взяты различные природные среды. Объектами экологического мониторинга являются природные среды и ресурсы, к которым относятся: атмосферный воздух; поверхностные воды суши; морские воды; почвенный покров; геологическая среда; растительный и животный мир (рис.9.1).

Рис.9.1. Классификация экологического мониторинга по природным средам.

 

 

Для получения объективной информации о состоянии и об уров­не загрязнения различных объектов окружающей среды (атмос­ферного воздуха, воды, почвы) необходимо располагать надеж­ными методами анализа. Эффективность любого метода оценива­ется совокупностью таких показателей, как селективность и точ­ность определения, воспроизводимость получаемых результатов, чувствительность определения, пределы обнаружения элемента и экспрессность выполнения анализа. Кроме того, методы должны обеспечивать проведение анализа в широком интервале концент­раций элементов (включая следовые). Это должно учитываться при выборе методов и средств наблюдений.

Фотометрический метод основан на сравнении оптических плот­ностей исследуемой и контрольной жидкостей. Разновидностями фотометрического метода являются фото колориметрический, спектрофотометрический, турбидиметрический, нефелометрический и флуориметрический (люминесцентный) методы. Современные фотоколориметры отечественного производства марок ФЭК-М, ФЭК-Н-5, ФЭК-Н-57, ФЭК-56, ФК-110, ФК-120 и другие представляют собой двухлучевые приборы с двумя фотоэлемен­тами и имеют одинаковые принципиальные схемы. Чувствитель­ность определения зависит от природы соединений и составляет для неорганических соединений 0,04... 20 мкг/мл пробы и для орга­нических соединений — 0,02... 10 мкг/мл пробы.

Спектрофотометрический метод основан на тех же принципах, что и фотоколориметрический. Различие состоит в том, что в спектро­фотометре используется поглощение монохроматического света. Для жидких сред применяются спектрофотометры марок СФ-4, СФ-4а, СФД-2, СФ-2М, СФ-5, СФ-8, СФ-9, СФ-10, СФ-14, СФ-19, С-605 и др. Чувствительность определения органических и неорга­нических соединений находится на уровне 0,08... 20 мкг/мл пробы.

Турбидиметрический метод применяется для определения коли­чества веществ, которые находятся во взвешенном состоянии, посредством измерения интенсивности прохождения света через контролируемый раствор пробы. В качестве приборов могут быть использованы спектрофотометры любых марок. Для увеличения их чувствительности следует применять синий светофильтр. Турбиди­метрический метод пригоден для измерения концентраций, уро­вень которых составляет несколько частиц на миллион.

Нефелометрический метод отличается от турбидиметрического тем, что в этом случае измеряется не прошедший через суспензию свет, а рассеянный, поэтому данный метод является более чув­ствительным для сильноразбавленных суспензий. Нефелометриче­ский метод при благоприятных условиях позволяет получить точ­ность, сравнимую с точностью колориметрических методов.

Возможность использования флуориметрического (люминесцен­тного) метода для аналитических целей обусловлена тем, что неко­торые вещества при воздействии на них ультрафиолетового излу­чения флуоресцируют. Этот метод имеет ограниченное примене­ние. Точным и чувствительным он является для интенсивно флуо­ресцирующих веществ.

Полярографический метод основан на восстановлении анализи­руемого соединения на ртутном капающем электроде и использу­ется, как правило, при анализах следовых количеств веществ, на­ходящихся в разных состояниях. Для анализа используются поля­рографы ППТ-1, ПУ-1, ПЛ-2, ПА-3, ПО-5122, чувствительность определения концентраций органических и неорганических соеди­нений которых составляет 0,05... 1 мкг/мл пробы.

Газохроматографический метод основан на селективном разде­лении соединений между двумя несмешивающимися фазами, одна из которых неподвижна (жидкость или твердое тело), а другая под­вижна (инертный газ-носитель). Этот метод позволяет определять ничтожно малые количества веществ, не обладающих специфи­ческими реакциями, и анализировать смеси, состоящие из десят­ков и сотен компонентов с близкими свойствами. Для анализа ис­пользуются хроматографы ЛМ-8МД5, ЛМ-8МД7, ЛХМ-80, «Газохром-1109», «Газохром-1106Э», «Газохром-1106Т», «Газохром-3101», «Цвет» (модели 101... ПО), «Сигма-1», хромато-масс-спектрометр

МХ-1307М и др.

Масс-спектрометрический метод заключается в ионизации газо­образной пробы электронной бомбардировкой, после чего обра­зующиеся ионы подвергаются воздействию магнитного поля. В за­висимости от массы и заряда ионы отклоняются с различной ско­ростью и соответствующим образом разделяются. Особенностью метода являются малый объем пробы и высокая избирательность.

Спектрально-химический метод сочетает в себе две последова­тельные операции:

1. Соосаждение групп элементов из растворов с помощью 2,4-динитроанилина; отделение их и соосаждение из фильтра молибдена;

2. Спектральное определение соосажденных элементов в золь­ном остатке с использованием соответствующих искусственных стандартов.

В основе спектрально-эмиссионного метода лежит излучение све­товой энергии атомами, ионами и реже молекулами. Излучаемые атомами и ионами эмиссионные линейчатые спектры не зависят от вида химических соединений, из которых состоит исследуемое вещество, в связи с чем этот анализ применяется для определения элементарного состава проб воды и почвы. Универсальность, вы­сокая чувствительность, хорошая точность и быстрота определе­ния обусловили широкое распространение этого метода. При фотографической регистрации спектра метод позволяет одновремен­но анализировать до 30 элементов в одной пробе. В пробах почвы и воды могут быть определены очень низкие концентрации многих элементов (1... 10%).

Наиболее эффективным способом получения сведений о за­грязнении атмосферы в большом масштабе является использова­ние экологических спутников. Полученная с их помощью информа­ция может быть использована в сочетании с реперными данными локальных измерений в различных точках земного шара, что по­зволит повысить точность дистанционного зондирования.

В настоящее время единственным микрокомпонентом атмосфе­ры Земли, измерение концентрации которого производится в те­чение многих лет, является С02. По результатам измерения можно рассчитать последствия нарушения экологического равновесия при сжигании горючих ископаемых и достаточно точно оценить масш­табы воздействия.

Дистанционные методы базируются на измерении и интерпрета­ции характеристик электромагнитных полей на различных рассто­яниях от исследуемого объекта. Принципиально новые возможно­сти, которые они открывают, связаны с наблюдением атмосферы с искусственных спутников Земли, пилотируемых кораблей и ор­битальных станций, выполнением измерений в непрерывном ре­жиме при изменяющихся условиях, в больших объемах воздуха на огромных территориях (десятки и сотни квадратных километров) с пространственным разрешением, в несколько десятков метров.

Методы абсорбционной спектрометрии широко применяются для дистанционных измерений концентрации микрокомпонентов ат­мосферы. За последние 15 — 20 лет получил распространение ме­тод спектрометрии солнечного излучения, в частности определе­ния микрокомпонентов тропосферы и стратосферы по данным аэростатных измерений инфракрасной солнечной радиации. Воз­можности регистрации спектра Солнца открыли перспективы для внедрения метода «затменного» зондирования стратосферы и мезосферы, а также для оценки фоновых концентраций СО, СН4, N02, N20 в вертикальном столбе атмосферы по спектрам солнеч­ного излучения на уровне Земли.

Дистанционный метод определения концентрации оксида азо­та предназначен для измерения содержания N02 на фоне рассеян­ной солнечной радиации в атмосфере городов, в выбросах от пред­приятий, из отдельных труб заводов, а также из вулканов.




Поделиться с друзьями:


Дата добавления: 2014-01-13; Просмотров: 476; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.