Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Основные определения и терминология

Наука об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности называется метрологией. К основным направлениям (слагаемым) метрологии относят:

-общую теорию измерений;

-единицы физических величин и их системы;

-методы и средства измерений;

-методы определения точности измерений;

-основы обеспечения единства измерений и единообразия средств измерений;

-эталоны и образцовые средства измерений;

-методы передачи размеров единиц от эталонов или образцовых средств измерений рабочим средством измерений.

Под измерениями понимают способ количественного познания свойств физических объектов. Существуют различные физические объекты, обладающие разнообразными физическими свойствами, количество которых неограниченно. Человек в своем стремлении познать физические объекты — объекты познания — выделяет некоторое ограниченное количество свойств, общих в качественном отношении для ряда объектов, но индивидуальных для каждого из них в количественном отношении. Такие свойства получили название физических величин.

Физические величины различают в качественном и количественном отношении. Качественная сторона определяет «вид» величины (например, электрическое сопротивление), а количественная — ее «размер» (например, сопротивление конкретного резистора). Таким образом, физическая величина — свойство, общее в качественном отношении для множества объектов и индивидуальное в количественном отношении для каждого из них. Количественное содержание свойства, соответствующего понятию «физическая величина», в данном объекте — размер физической величины. Размер физической величины существует объективно, вне зависимости от того, что мы знаем о нем.

В результате измерений человек получает знания об объектах в виде значений физических величин. Понятие «физическая величина» распространяют на свойства, изучаемые не только в физике, но и в других областях науки и техники.

В ГОСТ 16263—70 «Метрология. Термины и определения» дано определение понятия «измерение»: измерение — нахождение значения физической величины опытным путем с помощью специальных технических средств.

В этом определении отражены следующие главные признаки понятия «измерение»:

а) измерять можно свойства реально существующих объектов познания, т. е. физические величины;

б) измерение требует проведения опытов, т. е. теоретические рассуждения или расчеты не могут заменить эксперимент;

в) для проведения опытов требуются особые технические средства — средства измерений, приводимые во взаимодействие с материальным объектом;

г) результатом измерения является значение физической величины.

Принципиальная особенность измерения заключается в отражении размера физической величины числом. Число может быть выражено любым принятым способом, например комбинацией цифр, комбинацией уровней электрических напряжений и т. д.

Значение физической величины — количественная оценка измеряемой величины должна быть не просто числом, а числом именованным, т. е. результат измерения должен быть выражен в определенных единицах, принятых для данной величины. Только в этом случае результаты измерений, полученные различными средствами и разными экспериментаторами, сопоставимы.

Результат измерения практически всегда отличается от истинного значения физической величины — значения, которое выражает размер величины абсолютно точно. Истинное значение физической величины определить невозможно.

Отличие результата измерения от истинного значения объясняется несовершенством средств измерений, несовершенством способа применения средства измерений, влиянием условий выполнения измерения, участием человека с его ограниченными возможностями и т. д.

Отклонение результата измерения от истинного значения измеряемой величины называют погрешностью измерения.

Поскольку истинное значение неизвестно, практически погрешность измерения оценивают,исходя из свойств средства измерений, условий проведения эксперимента и анализа полученных результатов. Полученный результат отличается от истинного значения, поэтому результат измерения имеет ценность только в том случае, если дана оценка погрешности полученного значения измеряемой величины. Причем чаще всего определяют не конкретную погрешность результата, а степень недостоверности —границы зоны, в которой находится погрешность.

Совокупность величин, связанных между собой зависимостями, образуют систему физических величин. В качестве основных могут быть выбраны любые из данного числа величин, но практически выбирают величины, которые могут быть воспроизведены и измерены с наиболее высокой точностью. В области электротехники основными величинами приняты длина, масса, время и сила электрического тока.

Зависимость каждой производной величины от основных отображается ее размерностью. Размерность величины представляет собой произведение обозначений основных величин, возведенных в соответствующие степени, и является ее качественной характеристикой. Размерности величин определяют на основе соответствующих уравнений физики.

Физическая величина является размерной, если в ее размерность входит хотя бы одна из основных величин, возведенная в степень, не равную нулю. Большинство физических величин являются размерными. Однако имеются безразмерные (относительные) величины, представляющие собой отношение данной физической величины к одноименной, применяемой в качестве исходной (опорной). Безразмерными величинами являются, например, коэффициент трансформации, затухание и т.д.

Физические величины в зависимости от множества размеров, которые они могут иметь при изменении в ограниченном диапазоне, подразделяют на непрерывные (аналоговые) и квантованные (дискретные) по размеру (уровню).

Аналоговая величина может иметь в заданном диапазоне бесконечное множество размеров. Таким является подавляющее число физических величин (напряжение, сила тока, температура, длина и т. д.). Квантованная величина имеет в заданном диапазоне только счетное множество размеров. Примером такой величины может быть малый электрический заряд, размер которого определяется числом входящих в него зарядов электронов. Размеры квантованной величины могут соответствовать только определенным уровням — уровням квантования. Разность двух соседних уровней квантования называют ступенью квантования (квантом).

Значение аналоговой величины определяют путем измерения с неизбежной погрешностью. Квантованная величина может быть определена путем счета ее квантов, если они постоянны.

Физические величины могут быть постоянными или переменными во времени. При измерении постоянной во времени величины достаточно определить одно ее мгновенное значение. Переменные во времени величины могут иметь квазидетерминированный или случайный характер изменения.

Квазидетерминированная физическая величина — величина, для которой известен вид зависимости от времени, но неизвестен измеряемый параметр этой зависимости. Случайная физическая величина - величина, размер которой изменяется во времени случайным образом. Как частный случай переменных во времени величин можно выделить дискретные во времени величины, т. е. величины, размеры которых отличны от нуля только в определенные моменты времени.

Физические величины делят на активные и пассивные. Активные величины (например, механическая сила, ЭДС источника электрического тока) способны без вспомогательных источников энергии создавать сигналы измерительной информации. Пассивные величины (например, масса, электрическое сопротивление, индуктивность) сами не могут создавать сигналы измерительной информации. Для этого их нужно активизировать с помощью вспомогательных источников энергии, например при измерении сопротивления резистора, через него должен протекать ток. В зависимости от объектов исследования говорят об электрических, магнитных или неэлектрических величинах.

Физическую величину, которой по определению присвоено числовое значение, равное единице, называют единицей физической величины; Размер единицы физической величины может быть любым. Однако измерения должны выполняться в общепринятых единицах. Общность единиц в международном масштабе устанавливают международными соглашениями. Действует ГОСТ 8.417—81 «Государственная система обеспечения единства измерений. Единицы физических величин», согласно которому в нашей стране введена к обязательному применению международная система единиц (СИ). Система единиц строится из основных и производных единиц. Основные единицы образуют минимальный набор независимых исходных единиц, а производные единицы представляют собой комбинацию основных единиц. Основные единицы: метр (длина), килограмм (масса), секунда (время), ампер (сила тока), градус Кельвина (температура), кандела (сила света), моль(количество вещества).

При изучении объекта исследования необходимо выделит для измерений физические величины, учитывая цель измерений которая сводится к изучению или оценке каких-либо свойств объекта. Поскольку реальные объекты обладают бесконечным множеством свойств, то для получения результатов измерений адекватных цели измерений, выделяют в качестве измеряемых величин определенные свойства объектов, существенные при вы бранной цели, т. е. выбирают модель объекта.

В результате выбора модели устанавливают измеряемые величины, в качестве которых принимают параметры модели или их функционалы. За истинное значение измеряемой величины принимают такое значение параметра модели, которое можно было бы получить в результате мысленного эксперимента, свободного от каких-либо погрешностей. Одному и тому же исследуемому объекту может ставиться в соответствие та или иная модель, исходя из условий применения объекта и необходимой точности описания объекта. Например, резистор, используемый в цепях постоянного тока, характеризуют сопротивлением постоянному току. При использовании резистора в цепях с токами высокой частоты необходимо учитывать комплексный характер сопротивления резистора, т. е. резистор необходимо описывать более сложной моделью, учитывающей поверхностный эффект, собственные емкости и индуктивности. Если тот же резистор подвергается воздействию тока, сила которого меняется в большом диапазоне, то его следует рассматривать как нелинейный резистор, сопротивление которого зависит от силы тока.

Идеализация, необходимая для построения модели, обусловливает неизбежное несоответствие между параметром модели и реальным свойством объекта, что приводит к погрешности. Если погрешность «несоответствия» превышает предел допускаемой погрешности измерения, то измерение с требуемой точностью невозможно и это приводит к необходимости задаваться новой моделью.

Итак, для измерения необходимо, чтобы измеряемому свойству объекта соответствовал параметр модели объекта и погрешность из-за несоответствия модели объекту должна быть меньше допускаемой погрешности измерения.

При измерениях используют понятие «информация». Информация — это совокупность сведений, уменьшающих начальную неопределенность знаний об объекте. Одними из наиболее важных являются сведения о количественных характеристиках свойств объектов, которые получают путем измерений. Такие сведения увеличивают наши знания и уменьшают степень неопределенности знаний об объекте, т.е. измерение—информационный процесс. Информацию о значениях измеряемых физических величин называют измерительной информацией.

Материальный носитель информации — сигнал. Сигналом в общем смысле является физический процесс, протекающий во времени. Сигнал, функционально связанный с измеряемой физической величиной, называют сигналом измерительной информации.

Сигнал измерительной информации имеет информативный параметр —параметр, функционально связанный с измеряемой величиной. По этому признаку различают непрерывные, или аналоговые, и дискретные сигналы. Часто изменение сигнала по информативному параметру называют изменением по уровню. Дискретные по уровню сигналы называют также квантованными сигналами.

Параметры сигнала, не связанные функционально с измеряемой величиной, называют неинформативными параметрами.

Поскольку физическая величина изменяется случайным образом, сигнал измерительной информации — случайный сигнал, информативный параметр которого изменяется случайным образом. В некоторых случаях носителем информации является квазидетерминированный сигнал, т. е. сигнал, у которого известна форма, но неизвестен информативный параметр.

Рассмотрим основные виды сигналов, используемых в средствах измерений.

1. Непрерывные (аналоговые) по информативному параметру и времени сигналы. Непрерывные сигналы определены в любой момент времени существования сигнала и могут принимать любые значения в диапазоне его изменения.

2. Непрерывные по информативному параметру и дискретные по времени сигналы.

3. Сигналы, непрерывные по времени и квантованные (дискретные) по информативному параметру.

4. Сигналы, дискретные повремени и квантованные по информативному параметру.

 

Сигнал измерительной информации часто сопровождается помехой — сигналом, не несущим измерительной информации. Помеха может быть случайной и квазидетерминированной. При описании сигналов используют модели.

В процессе измерения любой физической величины происходят преобразования сигнала, несущего измерительную информацию. Такие преобразования, выполняемые с установленной погрешностью, называют измерительнымипреобразованиями. При математическом анализе для упрощения считают, что при измерительных преобразованиях происходят «преобразования» одной величины в другую, хотя фактически преобразуются сигналы. Измерение преследует цель получить результат измерения в виде именованного числа. Поэтому в процессе преобразований при измерении происходит образование числа, выраженного тем или иным способом. В общем случае при измерении имеют место несколько видов измерений. На первом этапе могут быть преобразования непрерывных сигналов — аналоговые преобразования. Затем осуществляется аналого-цифровое преобразование, при котором получается значение измеряемой величины в виде числа. Могут иметь место также преобразования над числом. В некоторых случаях, например на заключительном этапе, может быть цифро-аналоговое преобразование сигнала, т. е. получение сигнала, параметр которого пропорционален результату измерений (числу). Такой сигнал может быть использован, например, в аналоговом регистрирующем приборе.

Все измерения физических величин выполняют с помощью средств измерений. Для выполнения измерений с учетом различных требований и различных условий измерительная техника располагает большим перечнем различных средств измерений.

По функциональному назначению все средства измерений разделяют на следующие группы: меры, измерительные преобразователи, измерительные приборы, измерительные информационные системы и измерительные установки.

Свойства средств измерений оценивают характеристиками, среди которых выделяют комплекс метрологических характеристик, т. е. характеристик, которые необходимы при оценке точности результатов измерений. Важным отличительным признаком средств измерений является наличие у них нормированных метрологических характеристик, благодаря чему при надлежащем применении средств измерений может быть оценена точность получаемых результатов измерений.

Обобщенной метрологической характеристикой средства измерений является класс точности, определяемый пределами допускаемых погрешностей и другими свойствами средства измерений, влияющими на точность результатов измерений. Наряду с измерениями информацию о свойствах объектов материального мира можно получить также с помощью счета, контроля, технического диагностирования и распознавания образов.

Счетом называют определение числа качественно однотипных объектов в данной их совокупности.

Контроль — процесс установления соответствия между состоянием объекта контроля и заданной нормой. При контроле нет необходимости знать численное значение контролируемой величины. Однако контроль содержит ряд операций, присущих измерениям (измерительные преобразования, сравнения). Поэтому вопросы точности для контроля имеют существенное значение. Контроль может выполняться как с участием человека, так и автоматически, с помощью контрольно-измерительных приборов и систем автоматического контроля.

Во многих случаях для восстановления нормальной работы объекта необходимо выявить элементы, послужившие причиной неправильного функционирования объекта. Появилась необходимость в техническом диагностировании, под которым понимают процедуру для обнаружения отказов отдельных элементов объектов, т. е. определения технического состояния объекта диагностирования. Техническое диагностирование осуществляют с помощью систем технического диагностирования.

Процедуру, связанную с определением соответствия между исследуемым объектом и заданным образом, называют распознаванием образа. Основная задача распознавания образа заключается в сопоставлении по признакам распознавания «эталонных» образов с данным объектом и решении вопроса об отнесении объекта к определенному образу. При распознавании материальных объектов и происходящих в них процессов, характеризующихся параметрами, эти параметры измеряют и сопоставляют их значения с областью значений, определяющих количественное описание свойств образа.

Производством и применением средств измерений для получения измерительной информации, а также научными вопросами, возникающими при этом, занимается отрасль науки и техники, называемая измерительной техникой.

 

<== предыдущая лекция | следующая лекция ==>
Концепции системного, ситуационного и процессного подходов в менеджменте | Погрешности измерений
Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 582; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.012 сек.