Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Методы функций близости

Методы данной группы основаны на использовании функций, оценивающих меру близости между распознаваемым образом с вектором x* = (x* 1,…., x*n), и эталонными образами различных классов, представленными векторами xi = (xi 1,…, xin), i= 1,…, N, где i – номер класса образов.

Процедура распознавания согласно данному методу состоит в вычислении расстояния между точкой распознаваемого образа и каждой из точек, представляющих эталонный образ, т.е. в вычислении всех значений di, i= 1,…, N. Образ относится к классу, для которого значение di имеет наименьшее значение среди всех i= 1,…, N.

Функция, ставящая в соответствие каждой паре векторов xi, x* вещественное число как меру их близости, т.е. определяющая расстояние между ними может быть достаточно произвольной. В математике такую функцию называют метрикой пространства. Она должна удовлетворять следующим аксиомам:

r (x,y)= r (y,x);

r (x,y) > 0, если x не равен y и r (x,y)=0 если x=y;

r (x,y) <= r (x,z)+ r (z,y)

Перечисленным аксиомам удовлетворяют, в частности, следующие функции

ai =[sum(xijxj*)2]1/2, j =1,2,… n.

bi =sum[abs (xixj*)], j =1,2,… n.

ci =max abs (xixj*), j =1,2,… n.

Первая из них называется евклидовой нормой векторного пространства. Соответственно пространства, в которых в качестве метрики используется указанная функция называется Евклидовым пространством.

Часто в качестве функции близости выбирают среднеквадратическую разность координат распознаваемого образа x* и эталона xi, т.е. функцию

di = (1/ n) sum(xijxj*)2, j =1,2,… n.

Величина di геометрически интерпретируется как квадрат расстояния между точками в пространстве признаков, отнесенный к размерности пространства.

Часто оказывается, что разные признаки неодинаково важны при распознавании. С целью учета данного обстоятельства при вычислении функций близости разности координат, соответствующие более важным признакам умножают на большие коэффициенты, а менее важным – на меньшие.

В таком случае di = (1/ n) sum wj (xijxj*)2, j =1,2,… n,

где wj – весовые коэффициенты.

Введение весовых коэффициентов эквивалентно масштабированию осей пространства признаков и, соответственно растяжению либо сжатию пространства в отдельных направлениях.

Указанные деформации пространства признаков преследуют цель такого размещения точек эталонных образов, которое соответствует наиболее надежному распознаванию в условиях значительного разброса образов каждого класса в окрестности точки эталонного образа.

Группы близких друг другу точек образов (скопления образов) в пространстве признаков называют кластерами, а задачу выделения таких групп – задачей кластеризации.

Задачу выявления кластеров относят к задачам распознавания образов без учителя, т.е. к задачам распознавания в условиях отсутствия примера правильного распознавания.

<== предыдущая лекция | следующая лекция ==>
Знакочередующиеся ряды | Методы дискриминантных функций
Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 979; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.