Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Операции над графами




1) Объединение двух графов G =(V, E) и G ¢=(V ¢, E ¢) есть граф S =(VV ¢, EE ¢).

На рисунке 15 показано объединение двух графов.

 

 
 

 
 

2) Пересечение двух графов G =(V, E) и G ¢=(V ¢, E ¢) есть граф S =(VV ¢, EE ¢). См. рис.16.

 

 


4) Относительное дополнение подграфа до графа – это граф, в который входят те ребра основного графа, которых не было в подграфе, а множество вершин совпадает с множеством вершин основного графа. См. рис.18.

 

 
 

 

3) Кольцевая сумма двух графов G Å G ¢ есть граф, не имеющий изолированных вершин и состоящий только из ребер, присутствующих либо в G, либо в G ¢, но не в обоих графах одновременно. Т.о. это Е Å Е ¢ реберно-порожденный граф. См. рис.17.

 

 

5) Абсолютное дополнение – это дополнение до полного графа на том же множестве вершин. Так для графа, изображенного в правой части равенства на рис.18, абсолютное дополнение будет изображаться так, как показано на рис.19.

 

 

 
 

6) Удаление ребра – ребро удаляется из графа, а инцидентные ему вершины остаются. См.рис.20.

 

7) Удаление вершины – вершина удаляется из графа вместе со всеми инцидентными ей ребрами. См. рис.21.

 
 

 
 

8) Отождествление (замыкание) вершин – при замыкании двух вершин, эти вершины удаляются из графа и заменяются одной новой, при этом ребра, инцидентные исходным вершинам, теперь будут инцидентны новой вершине.

 

 


9) Стягивание ребра – ребро удаляется, а его концевые вершины отождествляются. На рисунке 23 последовательно стягиваются ребра е 1, е 3, е 2.




Поделиться с друзьями:


Дата добавления: 2014-01-14; Просмотров: 383; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.01 сек.