Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вращение плоскости поляризации




Искусственное двойное лучепреломление.

ВРАЩЕНИЕ ПЛОСКОСТИ ПОЛЯРИЗАЦИИ.

ЛЕКЦИЯ 14. ИСКУССТВЕННОЕ ДВОЙНОЕЛУЧЕПРЕЛОМЛЕНИЕ.

 

Вопросы:

 

Вопрос 1. Искусственное двойное лучепреломление.

 

В прозрачных аморфных телах - естественных анизотропных средах, а также в кристаллах кубической системы может возникать двойное лучепреломление под влиянием внешних воздействий: механических деформациях тел, электрического поля (эффект Керра), магнитного поля (явление Коттон-Мутона). Под действием указанных воздействий анизотропное вещество приобретает свойства одноосного кристалла, оптическая ось которого совпадает с направлением деформации, напряженности электрического или магнитного полей соответственно. Возникающая при этом оптическая анизотропия характеризуется разностью показателей преломления обыкновенного и необыкновенного лучей в направлении перпендикулярном оптической оси. Опыт показывает, что эта разность пропорциональна механическому напряжению s в данной точке тела:

 

n 0n e = k 1 s, (14.1)

 

где k 1 - коэффициент пропорциональности, зависящий от свойств вещества.

Для наблюдения эффекта поместим стеклянную, пластинку Q между скрещенными поляризаторами Р1 и Р2. (рис.14.1). Пока стекло не

 


Рис.14.1 Рис.14.2

 

деформировано, такая система света не пропускает. При сжатии пластинки, свет через систему начнет проходить, причем интенсивность прошедшего света зависит от разности n 0n e, а значит, и от s. Наблюдаемая в прошедших лучах интерференционная картина, возникающая при наложении обыкновенного и необыкновенного лучей, оказывается испещренной цветными полосами. Каждая такая полоса соответствует одинаково деформированным местам пластинки, одинаковым s. Следовательно, по расположению полос можно судить о распределении напряжений внутри пластинки. На этом основан метод исследования напряжений: изготовленная из прозрачного изотропного материала модель какой-либо детали или конструкции помещается между скрещенными поляризаторами и подвергается действию нагрузок, подобных тем, какие будут испытывать реальная деталь или конструкция. Анализ интерференционной картины позволяет определить распределение напряжений и судить об их величине.

Возникающее под воздействием электрического поля двойное лучепреломление в жидкостях и в аморфных твердых телах было обнаружено английским физиком Д. Керром в 1875г. и получило название эффекта Керра. В 1930г. эффект Керра был обнаружен и в газах.

На рис.14.2 представлена схема установки для исследования эффекта Керра в жидкостях. Установка состоит из ячейки Керра − герметичного сосуда с жидкостью, в которую введены пластины конденсатора, помещенной между скрещенными поляризаторами Р и Р '. При подаче на пластины напряжения между ними возникает практически однородное электрическое поле, а жидкость приобретает свойства одноосного кристалла с оптической осью, ориентированной параллельно вектору напряженности .

Возникающая разность показателей преломления обыкновенного и необыкновенного лучей

 

n 0n e = k 2 E 2, (14.2)

 

где k 2 – коэффициент, характеризующий вещество.

На пути l, равном длине пластин, между обыкновенным и необыкновенным лучами возникает оптическая разность хода

 

D = (n 0n e) l = k 2 lE 2

или разность фаз

 

d = (D/ l 0)2p = 2pk2 lE 2/ l 0. (14.3)

 

Это выражение принято записывать в виде

 

d =2p Вl Е 2, (14.4)

 

где В = к 2 / λ 0 -характерная для вещества величина, называется постоянной Керра.

Из известных жидкостей наибольшей постоянной Керра обладает нитробензол. Постоянная Керра В зависит от температуры вещества Т и длины волны оптического излучения l.

Эффект Керра объясняется различной поляризуемостью молекул по разным направлениям. В отсутствии электрического поля молекулы ориентированы хаотическим образом, поэтому жидкость не обнаруживает анизотропии. Под действием поля молекулы, обладающие дипольным моментом (полярные молекулы), приобретают преимущественную ориентацию по полю, а неполярные молекулы – в направлении наибольшей поляризуемости. В результате жидкость становится оптически анизотропной. Ориентирующему действию поля препятствует тепловое движение молекул, поэтому постоянная Керра уменьшается с повышением температуры Т.

Время, в течение которого устанавливается при включении электрического поля и исчезает при выключении его оптическая анизотропия, составляет около 10-10 с. Поэтому ячейка Керра, помещенная между скрещенными поляризаторами, может служить практически безынерционным световым затвором и применяется в лазерной технике для управления режимом работы лазеров, для исследования быстро протекающих оптических процессов. Модуляция света с помощью ячейки Керра достигает частоты до 109 Гц.

Аналогом эффекта Керра является эффект Коттона-Мутона − оптическая анизотропия, возникающая под действием магнитного поля. Если молекулы вещества анизотропны и обладают магнитными моментами, то они могут преимущественно ориентироваться в постоянном магнитном поле, что приводит к возникновению анизотропии и связанному с ней двойному лучепреломлению. Вещество в этом случае подобно одноосному кристаллу с оптической осью, параллельной вектору индукции магнитного поля . Схема установки по наблюдению двойного лучепреломления в эффекте Коттона-Мутона подобна, как и для эффекта Керра. Разность показателей преломления обыкновенного и необыкновенного лучей описывается соотношением

 

n 0n e = k 3 В 2, (14.5)

 

где k 3 – коэффициент, характеризующий вещество.

Возникновение оптической анизотропии возможно и при воздействии на вещество мощного лазерного поляризованного излучения. Электрическое поле световой волны поляризует атомы или молекулы вещества, вызывая тем самым его оптическую анизотропию.




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 382; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.017 сек.