Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Вопрос 4. Закон Стефана-Больцмана. Законы Вина




Физики C. Ленгли, Э. Прингсгейм, О. Люммер, Ф. Курлбаум и др., исследуя экспериментально распределение энергии излучения АЧТ по спектру, определили испускательные способности абсолютно черного тела R (λ,T) и R (ν,T). Результаты таких экспериментов при различных значениях температуры приведены на рис. 16.4.

В результате экспериментальных и теоретических исследований, выполненных Й. Стефаном и Л. Больцманом был получен важный закон теплового излучения абсолютно черного тела. Этот закон утверждает, что энергетическая светимость абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры, то есть

. (16.10)

 

Рис. 16.4

 

По современным измерениям постоянная Стефана-Больцмана

σ = 5,6686·10-8 .

Для реальных тел закон Стефана-Больцмана выполняется лишь качественно, то есть с ростом температуры энергетические светимости всех тел увеличиваются. Однако, для реальных тел зависимость энергетической светимости от температуры уже не описывается простым соотношением (16.7), а имеет вид:

. (16.11)

 

Коэффициент А (T) в (16.11), всегда меньший единицы, можно назвать интегральной поглощательной способностью тела. Значения коэффициента А (T) известны для многих технически важных материалов. Так, в достаточно широком диапазоне температур для металлов А (T) = 0,1 ÷ 0,4, а для угля и окислов металлов А (T) = 0,5 ÷ 0,9.

Энергетическая светимость АЧТ, численно равная площади под соответствующими кривыми, сильно зависит от температуры. Максимум излучательной способности с увеличением температуры смещается в сторону коротких длин волн.

Закон Стефана-Больцмана не дает информации о спектральном составе излучения абсолютно черного тела.

В 1893 г. немецкий физик В.Вин теоретически рассмотрел термодинамический процесс сжатия излучения, заключенного в полости с идеально зеркальными стенками, и пришел к выводу, что испускательная способность абсолютно черного тела прямо пропорциональна кубу частоты и является функцией отношения ν/T:

, (16.12)

где α – постоянная величина, F - некоторая функция, конкретный вид которой термодинамическими методами установить невозможно.

Переходя в этой формуле Вина от частоты к длине волны, получим:

. (16.13)

Как видно, в выражение для испускательной способности температура входит лишь в виде произведения λT. Уже это обстоятельство позволило предсказать некоторые особенности функции . В частности, эта функция достигает максимума при определенной длине волны λm, которая при изменении температуры тела изменяется так, чтобы выполнялось условие: λmT = const.

Таким образом, В.Вин сформулировал закон теплового излучения, согласно которому длина волны λm, на которую приходится максимум испускательной способности абсолютно черного тела, обратно пропорциональна его абсолютной температуре. Этот закон можно записать в виде

, (16.14)

где - постоянная Вина.

Закон Вина называют законом смещения, подчеркивая тем самым, что при повышении температуры абсолютно черного тела положение максимума его испускательной способности смещается в область коротких длин волн. Результаты экспериментов, приведенные на рис. 16.4, подтверждают этот вывод не только качественно, но и количественно, строго в соответствии с формулой (16.14).

С ростом температуры любого тела длина волны, вблизи которой тело излучает больше всего энергии, также смещается в сторону коротких длин волн. Это смещение, однако, уже не описывается простой формулой (16.14), которую для излучения реальных тел можно использовать только в качестве оценочной, т.е. формула (16.14) остается в силе только при больших частотах и низких температурах.

Кроме закона смещения (16.14) Вин получил выражение для максимального значения испускательной способности АЧТ. Эту зависимость называют вторым законом Вина, согласно которому максимальное значение испускательной способности АЧТпрямо пропорционально абсолютной температуре в пятой степени:

, (16.15)

где . Однако, получить теоретическое выражение для универсальной функции Кирхгофа, хорошо описывающее экспериментальные результаты во всем диапазоне длин волн излучения тела, Вину не удалось.

Во всех разобранных выше случаях подход к изучению теплового излучения был термодинамическим. У.Рэлей и Д.Джинс впервые к этим явлениям применили методы классической статистической физики. Согласно закону о равномерном распределении энергии равновесной системы по степеням свободы на каждую колебательную степень свободы осциллятора с собственной частотой ν приходится энергия, равная < > = kT, где k − постоянная Больцмана. В соответствии с таким подходом У.Рэлей и Д.Джинс в 1905 г. получили выражение для универсальной функции Кирхгофа:

= kT. (16.16) Здесь − общее число степеней свободы системы, приходящихся на единицу объема полости.

Однако, как показал опыт, формула Рэлея – Джинса хорошо согласуясь с опытными данными только для малых частот (рис.16.5) и больших температур, не удовлетворяет закону смещения Вина, а также закону Стефана-Больцмана. Действительно, для абсолютно черного тела энергетическая светимость R(T), определяемая по формуле Рэлея−Джинса (16.16), оказывается равной бесконечности:

 

 


Рис. 1.5

 

.

Согласно закону Стефана-Больцмана (1.10) энергетическая светимость т.е. является конечной величиной. Поскольку вывод формулы (16.16) был безупречным в своей классической строгости и последовательности, решение проблемы описания теплового излучения в рамках классической физики оказалось невозможным в принципе. Это обстоятельство получило в физике образное название «ультрафиолетовая катастрофа». Причина вышеуказанных трудностей, возникших при отыскании вида функции Кирхгофа, связана с одним из основных положений классической физики, согласно которому энергия любой системы может изменяться непрерывно, т.е. может принимать любые сколь угодно близкие значения.

 




Поделиться с друзьями:


Дата добавления: 2014-11-06; Просмотров: 677; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.