Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Ветроэнергетика




Ветроэнергетика — отрасль науки и техники, разрабатывающая теоретические основы, методы и средства использования энергии ветра для получения механической, тепловой и электрической энергии и определяющая масштабы целесообразного использования ветровой энергии в народном хозяйстве.

Принцип использования ветровой энергии известен и используется человеком очень давно, начиная с ветряных мельниц. Движущийся поток ветра оказывает силовое воздействие на подвижную часть двигателя (рабочее колесо разного вида и конструкции), заставляя его вращаться и передавать полученную энергию другому техническому устройству для совершения полезной и нужной человеку работы (помол зерна, подъем воды из глубины земли, выработка электроэнергии и т.п.).

Кинетическая энергия Э кин (Дж) воздушного потока со средней скоростью (м/с), проходящего через поперечное сечение F2), перпендикулярное , и массой воздуха m (кг) рассчитывается по формуле

 

(17.13)

 

Величина m определяется по формуле

 

(17.14)

где r — плотность воздуха, кг/м3.

Обычно в расчетах в качестве р принимают ее значение, равное 1,226 кг/м3 и соответствующее следующим нормальным климатическим условиям: t =15°С, р = 760 мм рт. ст., или 101,3 кПа. Если в (17.13) в качестве m взять секундную массу воздуха (кг/с), то получим значение мощности, развиваемой потоком воздуха (Дж/с или Вт), т.е.

 

(17.15)

 

Для F = 1 м2 получаем значение удельной мощности (Вт) ветрового потока N уд (Вт/м2) со скоростью (м/с):

 

(17.16)

 

Обычно в ветроэнергетике используется рабочий диапазон скоростей ветра, не превышающих 25 м/с. Эта скорость соответствует 9-балльному ветру (шторм) по 12-балльной шкале Бофорта. Ниже приведены значения N уд для указанного рабочего диапазона скоростей ветра:

 

, м/с.....................................                    
N уд, Вт/м2............................. 4,9 16,55 39,2 76,6            

 

Преобразование кинетической энергии ветра в электрическую происходит с помощью ветроэнергетических установок (ВЭУ), которые можно классифицировать по следующим признакам:

· по мощности — малые (до 10 кВт), средние (от 10 до 100 кВт), крупные (от 100 до 1000 кВт), сверхкрупные (более 1000 кВт);

· по числу лопастей рабочего колеса — одно-, двух-, трех- и многолопастные;

· по отношению рабочего колеса к направлению воздушного потока — с горизонтальной осью вращения, параллельной (рис. 17.16) или перпендикулярной вектору скорости (ротор Дарье) (рис. 17.17).

В настоящее время в мире и в России наибольшее распространение получили трехлопастные ВЭУ с горизонтальной осью вращения, в состав которых входят следующие основные компоненты: рабочее колесо 1, гондола с редуктором 2 и генератором, башня 3 и фундамент 4.

Башня — чаще трубообразная, реже — решетчатая, на ней в гондоле размещается основное энергетическое, механическое и вспомогательное оборудование ВЭУ, в том числе рабочее колесо или ротор с лопастями, преобразующий энергию ветра в энергию вращения вала, редуктор для повышения частоты вращения вала ротора и генератор. Лопасти ротора могут быть жестко закреплены на его втулке или изменять свое положение в зависимости от скорости ветра для повышения полезной мощности ВЭУ. В качестве генератора могут использоваться: синхронные и асинхронные (чаще всего), а также (реже) асинхронизированные синхронные генераторы.

На рис 17.18 представлены основные энергетические характеристики ВЭУ с горизонтальной осью вращения с регулируемыми и нерегулируемыми лопастями ротора.

Для каждой ВЭУ можно выделить следующие три характерных значения рабочей скорости ветра: — для 0 £ £ мощность ВЭУ равна нулю; — расчетная скорость ветра по мощности, для < £ мощность ВЭУ меняется в зависимости от скорости ветра и частоты вращения ротора; — для > мощность ВЭУ равняется нулю за счет принудительного торможения ротора или разворота его лопастей параллельно вектору скоростей ветра.

Для ориентировочных расчетов в диапазоне скоростей ветра от до полезная мощность ВЭУ N ВЭУ (кВт) для заданной скорости ветра (м/с) на высоте башни Н б (м) и диаметре ротора ВЭУ D 1 (м) рассчитывается по формуле

 

(17.17)

где N уд (Вт/м2) определяется по (17.16); F ВЭУ2) — ометаемая площадь ВЭУ с горизонтальной осью вращения, определяемая по формуле

 

(17.18)

z — коэффициент мощности, обычно принимаемый равным 0,45 в практических расчетах, отн. ед.; hр — КПД ротора (порядка 0,9), отн. ед.; hг — КПД генератора (порядка 0,95), отн. ед.

После подстановки всех указанных значений в (17.17) получаем для ориентировочных расчетов:

 

(17.19)

 

Для малых ВЭУ находится обычно в пределах 2,5—4 м/с, а — от 8 до 10 м/с. Для крупных ВЭУ указанные значения составляют 4—5 м/с и 12—15 м/с соответственно. Предельная допустимая скорость ветра по соображениям прочности ВЭУ равна 60 м/с.

Уровень шума крупных ВЭУ непосредственно у основания башни не превышает 95—100 дБ. Обычно для энергетических целей используют кинетическую энергию приземного слоя воздуха высотой не более 200 м с максимальной его плотностью r. При этом для повышения мощности единичной ВЭУ с заданным диаметром ротора D 1 (м) стремятся увеличить высоту башни Н б (м), так как скорость ветра увеличивается с высотой по сложной степенной зависимости.

Чем выше расчетная скорость ветра, тем выше эффективность ВЭУ. Обычно в качестве нее применяется среднегодовая скорость ветра 0 (м/с), которая относительно мало меняется по годам. В то же время скорость ветра в течение года может существенно меняться во времени (как в течение суток, так и года в целом). Для нее характерны случаи, когда скорость ветра равна нулю (штиль), или не превышает (в этом случае мощность ВЭУ равна нулю из-за малой скорости ветра), или превышает (здесь мощность ВЭУ также равна нулю, но уже по соображениям прочности сооружений). Это означает, что гарантированная мощность ВЭУ в этих случаях равна нулю, и использование ВЭУ может лишь привести к экономии других видов энергоресурсов. Процесс изменения скорости ветра в течение года имеет свои закономерные зависимости (зимой скорость ветра выше, чем летом; в полдень выше, чем утром), а также существенную случайную составляющую. Для описания процесса изменения скорости ветра во времени требуются ежедневные наблюдения за скоростью ветра в данной точке не менее чем для 10—12 лет. Для описания ветрового процесса используются различные характерные функции распределения для разных географических зон России: распределения Гриневича, Рэлея, Вейбулла—Гудрича и др. Обычно они представляют собой зависимость частоты появления скорости i (м/с) в течение года ti ( i) в часах или относительных единицах. Указанные зависимости называются также кривыми дифференциальной повторяемости скоростей ветра t () и рассчитываются для условий ровной местности и высоты флюгера 10 м. Учет реальных условий местности (впадин, холмов, строений, леса и т.п.) производится путем пересчета указанной t () с помощью специальных коэффициентов (в России обычно принимается шкала Милевского).

В ветроэнергетических расчетах учитывается также и «роза ветров», т.е. характерные направления скоростей ветра в данной точке в течение года. Особое значение «роза ветров» приобретает в случае строительства ветропарков или ветроэлектростанций (ВЭС), состоящих из нескольких ВЭУ (десятков—сотен) в данной местности.

Для оценки перспективности ВЭУ в данной местности или регионе необходимо знать его валовые, технические и экономические ветроэнергетические ресурсы. На рис. 17.19 представлены энергоресурсы ветроэнергетики России.

Для России в целом указанные виды ресурсов соответственно равны: 80000; 6218 и 31 ТВт · ч. На сегодняшний день использование указанных ресурсов ветра в России практически неощутимо. Обычно в мировой практике принято считать, что, если среднегодовая скорость ветра в данной местности превышает 5 (или 6) м/с, то использование ВЭУ здесь весьма перспективно. Для среднегодовых скоростей ветра от 3 до 5 (6) м/с необходимы детальные технико-экономические расчеты, в том числе и учет условий использования ВЭУ — в объединенной или локальной энергосистеме или для питания автономного потребителя, а также конкретные социально-экологические и экономические характеристики рассматриваемого региона.

Весьма перспективным для России представляется совместное использование ВЭУ и дизельных энергоустановок (ДЭУ), которые в настоящее время составляют основы локальных систем электроснабжения обширных северных и приравненных к ним территорий страны. Использование энергии ветра в России весьма незначительно, хотя в стране имеется хороший производственный потенциал для разработки серийных или массовых ВЭУ любой мощности (от сотен ватт до 1 МВт).

Весьма ощутимы успехи развития ветроэнергетики в мире, где ежегодный прирост мощности в последнее пятилетие составляет 30 % и более в разных странах. На 01.01.2006 г. общая установленная мощность в мире составила 59264 МВт при годовом приросте мощности 11408 МВт (29 %). По оценкам экспертов, установленная мощность ВЭУ в мире к 2010 г. вырастет по сравнению с современным уровнем более чем в 2,5 раза и достигнет 14879 МВт. При этом абсолютным лидером здесь является Германия, где установленная мощность на 01.01.2006 г. составила 18445 МВт (при годовом приросте в 1808 МВт) при прогнозе на 2010 г. — 26495 МВт. В России построена Крюковская ВЭС мощностью 5,1 МВт (20 агрегатов по 225 кВт и один агрегат 600 кВт, г. Калининград), Анадырская ВЭС (Чукотка) мощностью 2,5 МВт (10 агрегатов по 250 кВт) и строится Элистинская ВЭС (Калмыкия) мощностью 22 МВт (22 агрегата по 1 МВт).

Десятки фирм в разных странах мира сегодня представляют на рынок серийные ВЭУ мощностью от нескольких сотен ватт до 2—4 МВт.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 527; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.023 сек.