Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Лабораторная работа №3. Цель работы: Рассчитать модуль упругости костной ткани и сравнить его с модулем упругости стали




ИЗУЧЕНИЕ УПРУГИХ СВОЙСТВ КОСТНОЙ ТКАНИ

 

Цель работы: Рассчитать модуль упругости костной ткани и сравнить его с модулем упругости стали.

Приборы и принадлежности: установка для изучения упругих свойств материалов, пластина костной ткани, стальная пластина, набор грузов, линейка, микрометр.

ТЕОРИЯ

Механические свойства твердых тел

В настоящее время на стыке механики, математики и ряда биологических и медицинских наук развилось новое научное направление – биомеханика. Её основная задача состоит в изучении закономерностей движения и деформирования различных биологических тканей под воздействием внешней среды.

Изучение механических свойств биологических тканей позволяет создавать новые схемы армирования конструкционных материалов и эффективные структуры синтетических материалов, применяемых для замещения пораженных тканей.

В некоторых разделах медицины, особенно в хирургии и ортопедии, при изучении опорно-двигательного аппарата человека очень важным является знание упругих свойств тканей организма, в частности костной ткани.

Рассмотрим механические свойства твердых тел, так как костная ткань относится к твердым телам. Все тела деформируются под действием сил.

Деформацией называют изменение формы и объёма тела, происходящее под действием внешних сил. Различают деформации упругие и пластические (остаточные). Упругой называют деформацию, которая при прекращении действия внешних сил полностью исчезает, тело восстанавливает свои размеры и форму. Пластической называют деформацию, которая сохраняется и после прекращения действия внешних сил. Является деформация упругой или пластической –зависит от материала тела и от величины приложенных к телу сил. Упругие деформации подчиняются закону Гука. Гук установил связь между величиной деформации и силами, её обусловливающими.

Согласно закону Гука при упругой деформации деформирующая сила F и величина деформации x пропорциональны между собой:

F = - k x.

 

Различают пять основных видов деформации:

- растяжение,

- сжатие,

- кручение,

- сдвиг,

- изгиб.

 

В конечном счете любую деформацию можно свести к двум наиболее простым: растяжению и сдвигу.

При деформации твердых кристаллических тел частицы, находящиеся в узлах кристаллической решетки, смещаются в новые положения. Этим смещениям препятствуют силы взаимодействия между частицами, поэтому в деформируемом теле возникают внутренние упругие силы F упр. Эти силы уравновешивают внешние силы F вн, приложенные к телу.

F упр =F вн.

Таким образом, при деформации в теле возникает особое напряжённое состояние. Количественно это состояние характеризуют механическим напряжением s.

Механическим напряжением называют физическую величину, численно равную упругой силе, приходящейся на единицу площади поперечного сечения тела:

.

Мерой деформации служит относительная деформация e:

,

где x – первоначальный размер тела,

D x – изменение этого размера (например, l – длина, D l – удлинение).

Опыт показывает, что механическое напряжение s пропорционально относительной деформации e, если деформация упругая:

, где Е – модуль упругости (или модуль Юнга).

Модуль Юнга численно равен напряжению, при котором относительная деформация равна единице (т.е. удлинение D l равно первоначальной длине l).

На самом деле столь большие упругие деформации невозможны, т.к. при значительно меньших напряжениях происходит разрыв тела.

График зависимости s= f(x) изображён на рис. 1

 

 

 

Рис. 1

В области ОА справедлив закон Гука, сохраняется пропорциональность относительной деформации и механического напряжения. Точка А соответствует пределу пропорциональности. Точка В соответствует пределу упругости sупр.

Пределом упругости sупр называют наибольшее напряжение, при котором деформация еще сохраняет упругий характер. Материалы с высоким пределом упругости называют упругими.

Горизонтальный участок кривой определяет текучесть – такое состояние деформированного тела, при котором деформация возрастает без увеличения напряжения.

Свойство материалов выдерживать действие внешних сил без разрушения называют прочностью. Точка D на кривой соответствует пределу прочности. Пределом прочности sпр называют механическое напряжение, которое соответствует наибольшей выдерживаемой телом нагрузке перед разрушением.

Обычно для кристаллических тел этот график одинаков для растяжения и сжатия. Однако сложные по составу или неоднородные материалы (например, дерево, бетон, кость, пластмассы) проявляют различные свойства при растяжении и сжатии. Модуль Юнга, предел упругости и предел прочности у таких материалов будут различными для разных видов деформации.

Между упругими свойствами кристаллических мономеров и полимерных материалов существует принципиальная разница. Это связано с другим механизмом упругости высокомолекулярных соединений.

Рассмотрим механизм упругости кристаллических твердых тел и полимеров.

В основе деформации кристаллических тел лежит искажение пространственной решетки. При упругой деформации происходит только небольшое смещение частиц, образующих решетку. При этом нарушается равновесное соотношение между силами притяжения и отталкивания. В связи с этим возникают внутренние силы, противодействующие внешним. Эти силы восстанавливают первоначальную форму тела при прекращении действия внешних сил. При остаточной деформации искажение решётки настолько значительно, что прежние связи между частицами нарушаются и устанавливаются новые равновесные связи.

Упругость полимеров называют каучукоподобной эластичностью (или высокоэластичностью).

Эластичными называют материалы, способные к большим упругим деформациям. Особенность упругих свойств полимеров обусловлена их строением. Полимерами называют вещества, молекулы которых представляют собой длинные цепи, составленные из большого числа атомных группировок, соединенных химическими связями. Молекулы полимеров причудливо изогнуты, их форма и размеры все время меняются в результате теплового движения. При наложении механической нагрузки молекулы полимера вытягиваются в соответствующем направлении и размеры тела увеличиваются. После снятия нагрузки молекулы, вследствие теплового движения, восстанавливают свои размеры.

Деформация полимера упругая, остаточные деформации у большинства полимеров практически отсутствуют. Механические свойства полимера являются сочетанием свойств твердых тел и жидкостей. Полимеры достаточно прочны и способны к большим упругим деформациям.

К полимерам можно отнести кожу, волосы, рога, шерсть, шелк, хлопок и т.д. Биополимеры являются структурной основой всех живых организмов и играют большую роль в процессе их жизнедеятельности. К биополимерам относятся белки, нуклеиновые кислоты, полисахариды, гликопротеиды, гликолипиды и др.

Из множества биологических тканей наибольший интерес для механики представляет компактная костная ткань. Она является основным составным веществом длинных трубчатых костей, воспринимающих механические нагрузки.

 

Механические свойства костной ткани

Кость – основной материал опорно-двигательного аппарата. Костная ткань представляет собой форму соединительной ткани. Она является живой тканью, в которой происходит постоянное внутреннее разрушение и обновление биохимических компонентов.

Строение костной ткани достаточно сложно. Вещество костной ткани состоит из органических волокон коллагена, неорганических кристаллов и связующего вещества. Связующее (цементирующее) вещество состоит в основном из мукополисахаридов. Неорганическое вещество кости – это различные соли кальция. Кристаллы неорганических веществ в кости образуют сложный минерал, принадлежащий к классу апатитов. Свежая костная ткань содержит 60% Ca3(PO4)2, 5,9% CaCO3 и 1,4% Mg(PO4)2.

В упрощенном виде можно считать, что 2/3 массы компактной костной ткани составляет неорганический материал, минеральное вещество кости – гидроксилапатит, представляющее собой микроскопические кристаллики. В остальном кость состоит из органического материала, главным образом коллагена (высокомолекулярного соединения), обладающего высокой эластичностью.

Интересно отметить некоторую особенность костной ткани. Если из неё удалить неорганические вещества, то оставшиеся органические компоненты внешне сохраняют форму кости, но механические свойства нового материала становятся резиноподобными.

Если же из костной ткани удалить органические вещества, то внешняя форма кости тоже сохраняется, но материал становится хрупким, с низкой механической прочностью. Это значит, что ни органические, ни неорганические составляющие не являются по отдельности прочным конструкционным материалом для костной ткани. Костная ткань образуется только определенным сочетанием компонентов и обладает прочностью, сравнимой с металлами.

Сложное строение костной ткани придает ей нужные механические свойства: твердость, прочность, упругость. Механические свойства кости зависят от многих факторов, в том числе от возраста, индивидуальных условий роста организма, участка организма, питания и др.

Зависимость механического напряжения от относительной деформации для компактной костной ткани показана на рис. 2.

 

 

Рис. 2

 

Из рисунка видно, что данная зависимость подобна аналогичной зависимости для твердого тела. При малых деформациях выполняется закон Гука. Модуль Юнга у костной ткани приблизительно равен 1010 Па, а предел прочности - 108 Па. На практике модуль Юнга чаще измеряют в кГ/мм2.

ü Для костной ткани он колеблется в пределах от 1600 кГ/мм2 до 2000 кГ/мм2 в зависимости от участка тела и условий жизни человека.

ü Для сравнения: модуль Юнга стали равен 20000 кГ/мм2.

Известно, что после длительного действия механических нагрузок костная ткань не восстанавливает полностью своих прежних размеров, т.е. сохраняется некоторая остаточная деформация. Это свойство костной ткани используется в ортопедии.

 

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 1839; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.016 сек.