Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Задачи 11 и 12




Интегрирование элементарных дробей.

Интегрирование по частям.

Непосредственное интегрирование.

Методы интегрирования.

Рассмотрим три основных метода интегрирования.

Метод непосредственного интегрирования основан только на применении свойств неопределенного интеграла и таблицы интегралов основных функций.

Способ подстановки (замены переменных).

Теорема: Если требуется найти интеграл, но сложно отыскать первообразную, то с помощью замены x = j(t) и dx = j¢(t)dt получается:

 

Пример. Найти неопределенный интеграл.

Сделаем замену t = sinx, dt = cosxdt.

 

Пример.

Замена Получаем:

 

Основано на следующей формуле:

;

Пример.

 

Пример.

 

Перенесем последний интеграл в левую часть равенства.

 

 

Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным.

Пример.

 

Пример.

 

Пример.

 

 

Пример.

 

Пример.

 

Пример.

 

Пример.

 

Пример.

 

Пример.

 

Пример.

 

 

Определение: Элементарными называются дроби следующих четырех типов:

I. III.

II. IV.

m, n – натуральные числа (m ³ 2, n ³ 2) и b2 – 4ac <0.

Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.

I.

II.

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида III может быть представлен в виде:

 

Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам.

Пример.

 

Пример.

 

Пример.

 


Для решения задач 11 и 12 необходимо изучить раздел 6 Рабочей программы – определенный интеграл. Приведем основные теоретические факты, необходимые здесь.

 

Интегральные суммы.

Пусть на отрезке [a, b] задана непрерывная функция f(x).

y

M

 

 

m

0 a xi b x

Разобьем отрезок [a, b] на части (не обязательно одинаковые) n точками.

x0 < x1 < x2 < … < xn

Тогда x1 – x0 = Dx1, x2 – x1 = Dx2, …,xn – xn-1 = Dxn;

Внутри каждого отрезка выберем некоторую точку e.

x0 < e1 < x1, x1 < e < x2, …, xn-1 < e < xn.

Найдем значения функции в этих точках и составим выражение, которое называется интегральной суммой для функции f(x) на отрезке [a, b].

Sn = f(e1)Dx1 + f(e2)Dx2 + … + f(en)Dxn =

Обозначим maxDxi – наибольший отрезок разбиения. Если maxDxi® 0, то число отрезков разбиения отрезка [a, b] стремится к бесконечности.

Если, то

Определение: Если при любых разбиениях отрезка [a, b] таких, что maxDxi® 0 и произвольном выборе точек ei интегральная сумма стремится к пределу S, который называется определенным интегралом от f(x) на отрезке [a, b].

Обозначение:

а – нижний предел, b – верхний предел, х – переменная интегрирования, [a, b] – отрезок интегрирования.

Определение: Если для функции f(x) существует предел то функция называется интегрируемой на отрезке [a, b].

Теорема: Если функция f(x) непрерывна на отрезке [a, b], то она интегрируема на этом отрезке.

 

Свойства определенного интеграла.

1)

2)

3)

4) Если f(x) £ j(x) на отрезке [a, b] a < b, то

5) Если m и M – соответственно наименьшее и наибольшее значения функции f(x) на отрезке [a, b], то:

 

6) Теорема о среднем. Если функция f(x) непрерывна на отрезке [a, b], то на этом отрезке существует точка e такая, что

 

7) Для произвольных чисел a, b, c справедливо равенство:

 

Разумеется, это равенство выполняется, если существует каждый из входящих в него интегралов.

8)

Обобщенная теорема о среднем. Если функции f(x) и j(x) непрерывны на отрезке [a, b], и функция j(х) знакопостоянна на нем, то на этом отрезке существует точка e, такая, что

 

Вычисление определенного интеграла.

Теорема: Для всякой функции f(x), непрерывной на отрезке [a, b], существует на этом отрезке первообразная, а значит, существует неопределенный интеграл.

Теорема: (Теорема Ньютона – Лейбница)

Если функция F(x) – какая- либо первообразная от непрерывной функции f(x), то

 

это выражение известно под названием формулы Ньютона – Лейбница.

Иногда применяют обозначение F(b) – F(a) = F(x).

Формула Ньютона – Лейбница представляет собой общий подход к нахождению определенных интегралов.

 

Методы интегрирования определенных интегралов.

Что касается приемов вычисления определенных интегралов, то они практически ничем не отличаются от всех тех приемов и методов, которые были рассмотрены выше при нахождении неопределенных интегралов.

Точно так же применяются методы подстановки (замены переменной), метод интегрирования по частям, те же приемы нахождения первообразных для тригонометрических, иррациональных и трансцендентных функций. Особенностью является только то, что при применении этих приемов надо распространять преобразование не только на подинтегральную функцию, но и на пределы интегрирования. Заменяя переменную интегрирования, не забыть изменить соответственно пределы интегрирования.

 




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 340; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.008 сек.