Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Зонные диаграммы и токи диодного тиристора в открытом состоянии




В открытом состоянии (α – велики) все три перехода смещены в прямом направлении. Это происходит вследствие накопления объемных зарядов в базах n 1, p 2 тиристора.

Действительно, при больших значениях коэффициента передачи α 2 электроны, инжектированные из n 2‑эмиттера в р 2‑базу, диффундируют к р-n переходу коллектора П3, проходят его и попадают в n 1-базу. Дальнейшему прохождению электронов по тиристорной структуре препятствует потенциальный барьер эмиттерного перехода П1. Поэтому часть электронов, оказавшись в потенциальной яме n 1‑базы, образуют отрицательный избыточный заряд.

Инжектированные дырки из эмиттера р 1 в базу n 1 диффундируют к р‑n переходу коллектора П3, проходят через него и попадают в базу р 2. Дальнейшему их продвижению препятствует потенциальный барьер эмиттерного перехода П2. Следовательно, в базе р 2 происходит накопление избыточного положительного заряда.

В результате накопления избыточного положительного заряда в базе р 2 и отрицательного заряда в базе n 1 переход П3 смещается в прямом направлении, происходит резкое увеличение тока и одновременное уменьшение падения напряжения на тиристоре.

На рисунке 2.3 приведена зонная диаграмма тиристора с накопленным объемным зарядом в обеих базах n 1 и р 2.

Величина падения напряжения в прямом участке ВАХ составляет прямое напряжение на 3-х прямо смещенных p-n переходах и имеет величину порядка 1‑2 вольт.

 

Зонная диаграмма тиристора в открытом состоянии имеет следующий вид, когда на всех p-n переходах прямое смещение, на П1 и П2 – за счет внешнего напряжения, и на П3 – за счет объемных зарядов в базах Б1 и Б2.

Рис. 2.3. Зонная диаграмма и токи тиристора в открытом состоянии (везде прямое смещение)

Таким образом, тиристор имеет 2 устойчивых состояния: малый ток, большое напряжение, высокое сопротивление и большой ток, малое напряжение, малое сопротивление. Переход тиристора из «закрытого» в «открытое» состояние связан с накоплением объемного заряда в базах Б1 и Б2 из-за роста значения коэффициента передачи эмиттерного тока α, и коэффициента умножения М.

То есть рост α, М с ростом тока J и напряжения V G в тиристоре является причиной перехода тиристора из закрытого в открытое состояние.

В открытом состоянии тиристор находится до тех пор, пока за счет проходящего тока поддерживаются избыточные заряды в базах, необходимые для понижения высоты потенциального барьера коллекторного перехода до величины, соответствующей его прямому включению. Если же ток уменьшить до значения I у, то в результате рекомбинации избыточные заряды в базах уменьшатся, р‑n переход коллектора окажется включенным в обратном направлении, произойдет перераспределение падений напряжений на р‑n переходах, уменьшатся коэффициенты передачи α и тиристор перейдет в закрытое состояние.

Таким образом, тиристор в области прямых смещений (прямое включение) является бистабильным элементом, способным переключаться из закрытого состояния с высоким сопротивлением и малым током в открытое состояние с низким сопротивлением и большим током, и наоборот.

2.3. Зависимость коэффициента передачи α от тока эмиттера

В области малых токов основная причина зависимости α от тока I связана с рекомбинацией в эмиттерном переходе. При наличии рекомбинационных центров в области пространственного заряда эмиттерного перехода прямой ток такого перехода в области малых прямых смещений – рекомбинационный J рек. Зависимость этого тока от напряжения экспоненциальная, но показатель экспоненты в два раза меньше, чем для диффузионного тока J pD.

По мере роста прямого напряжения на p-n переходе диффузионная компонента тока J pD начинает превалировать над рекомбинационной. В терминах эффективности эмиттера γ, это эквивалентно возрастанию эфективности эмиттера, а следовательно и увеличению коэффициента передачи κ. На рисунке 2.2 показана зонная диаграмма эмиттерного перехода, которая иллюстрирует конкуренцию двух токов – рекомбинационного и диффузионного в токе эмиттера, а не рисунке 2.4 – типичная зависимость коэффициента передачи α от тока эмиттера I э при наличии рекомбинационных центров в ОПЗ p-n перехода.

Рис. 2.4. Типичная зависимость коэффициента передачи α от тока эмиттера I э при наличии сильной рекомбинации в ОПЗ p-n переходов

2.4. Зависимость коэффициента М от напряжения V G. Умножение в коллекторном переходе

Другой физический механизм, приводящий к накоплению объемных зарядов в базах тиристора связан с лавинным умножением в коллекторном переходе. При больших значениях обратного напряжения на p-n переходе величина электрического поля Е в области пространственного заряда может приблизиться к значению, соответствующему напряжению лавинного пробоя. В этом случае на длине свободного пробега электрон или дырка набирает энергию qλE, большую, чем ширина запрещенной зоны полупроводника qλE > Е g и вызывает генерацию новой электронно‑дырочной пары. Это явление аналогично лавинному пробою в стабилитронах.

Если М – коэффициент ударной ионизации, определяемый как количество носителей, рожденных при лавинном умножении одной частицей, то М описывается эмпирической формулой

,

где U М –напряжение лавинного пробоя, а значение коэффициента n для Ge, Si равно 3.

Таким образом, умножение в коллекторе может служить причиной накопления объемных зарядов в базах тиристора. С формальной точки зрения, умножение в коллекторе эквивалентно росту коэффициента передачи и величине коллекторного тока.




Поделиться с друзьями:


Дата добавления: 2014-10-15; Просмотров: 478; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.011 сек.