Студопедия

КАТЕГОРИИ:


Архитектура-(3434)Астрономия-(809)Биология-(7483)Биотехнологии-(1457)Военное дело-(14632)Высокие технологии-(1363)География-(913)Геология-(1438)Государство-(451)Демография-(1065)Дом-(47672)Журналистика и СМИ-(912)Изобретательство-(14524)Иностранные языки-(4268)Информатика-(17799)Искусство-(1338)История-(13644)Компьютеры-(11121)Косметика-(55)Кулинария-(373)Культура-(8427)Лингвистика-(374)Литература-(1642)Маркетинг-(23702)Математика-(16968)Машиностроение-(1700)Медицина-(12668)Менеджмент-(24684)Механика-(15423)Науковедение-(506)Образование-(11852)Охрана труда-(3308)Педагогика-(5571)Полиграфия-(1312)Политика-(7869)Право-(5454)Приборостроение-(1369)Программирование-(2801)Производство-(97182)Промышленность-(8706)Психология-(18388)Религия-(3217)Связь-(10668)Сельское хозяйство-(299)Социология-(6455)Спорт-(42831)Строительство-(4793)Торговля-(5050)Транспорт-(2929)Туризм-(1568)Физика-(3942)Философия-(17015)Финансы-(26596)Химия-(22929)Экология-(12095)Экономика-(9961)Электроника-(8441)Электротехника-(4623)Энергетика-(12629)Юриспруденция-(1492)Ядерная техника-(1748)

Уфа 2004




Формы обучения

ПО ХИМИИ НЕФТИ И ГАЗА

ПРАКТИКУМ

К выполнению расчетно-графических работ по строительной климатологии

УЧЕБНОЕ ПОСОБИЕ

КУРСОВА РОБОТА

 

з будівельної фізики, розділ будівельна кліматологія

 

 

на тему: Кліматичний паспорт міста_____________________

 

Студента (ки) _____ курсу ______ групи

 

напряму підготовки

АРХІТЕКТУРА БУДІВЕЛЬ І СПОРУД

 

Спеціальності АРХІТЕКТУРА

__________________________________

(прізвище та ініціали)

 

Керівник ___________________________

____________________________________

(посада, вчене звання, науковий ступінь, прізвище та ініціали)

 

Національна шкала ________________

Кількість балів: __________Оцінка: ECTS _____

 

Члени комісії ________________ ___________________________

(підпис) (прізвище та ініціали)

________________ ___________________________

(підпис) (прізвище та ініціали)

________________ ___________________________

(підпис) (прізвище та ініціали

 

 

м. Макіївка – 2013рік

 

 

 

 

курса ”Строительная физика”

для специальности “Архитектура” (6.060102)

 

 

Составители: профессор, к.т.н. Николай Васильевич Тимофеев

доцент, к.т.н. Галина Викторовна Шамрина

доцент Анатолий Николаевич Носаль

ассистент Галина Михайловна Васильченко

 

Ответственный за выпуск доцент, к.т.н. Н.Г. Прищенко

 

Рецензент профессор, арх. Х.А. Бенаи

 

 

Для студентов заочной дистанционной

 

 

 

ОГЛАВЛЕНИЕ

 

1. ГАЗ, НЕФТЬ И НЕФТЕПРОДУКТЫ............................................................................................... 4

1.1. Основные физические свойства и характеристики нефтей и газов...................................... 5

1.1.1. Плотность.............................................................................................................................. 5

1.1.2. Молекулярная масса............................................................................................................. 8

1.1.3. Вязкость................................................................................................................................. 9

1.1.4. Температуры вспышки и застывания............................................................................... 13

1.1.5. Элементный состав нефтей............................................................................................... 13

1.1.6. Фракционный состав нефтей............................................................................................ 14

1.1.7. Химический состав нефтей............................................................................................... 14

1.2. Классификация нефтей............................................................................................................. 21

1.3. Практикум.................................................................................................................................. 22

Лабораторная работа № 1............................................................................................................. 22

Лабораторная работа № 2. Первичная перегонка нефти.......................................................... 32

2. НЕФТЬ КАК МНОГОКОМПОНЕНТНАЯ СИСТЕМА.............................................................. 36

2.1. Основные примеси, содержащиеся в нефтях и газах............................................................ 36

2.2. Нефтяные эмульсии и способы их разрушения..................................................................... 38

2.3. Вода в нефти и нефтепродуктах.............................................................................................. 40

2.4. Сернистые соединения в нефти и нефтепродуктах............................................................... 40

2.5. Присутствие минеральных кислот, щелочей и солей в нефтепродуктах............................ 41

2.6. Механические примеси в нефти.............................................................................................. 42

2.7. Степень ненасыщенности нефтей и нефтепродуктов........................................................... 42

2.8. Практикум.................................................................................................................................. 44

Лабораторная работа № 3. Многокомпонентный состав нефти.............................................. 44

3. КОМПОНЕНТЫ НЕФТЕЙ, ГАЗОВ, НЕФТЕПРОДУКТОВ. СОСТАВ, СТРОЕНИЕ, СВОЙСТВА 51

3.1. АЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ.................................................................................. 51

3.1.1. АЛКАНЫ............................................................................................................................ 51

3.1.2. АЛКЕНЫ............................................................................................................................. 59

3.1.3. ДИЕНЫ................................................................................................................................ 64

3.1.4. АЛКИНЫ............................................................................................................................ 67

3.1.5. Практикум........................................................................................................................... 70

Лабораторная работа 4. Методы получения и химические свойства ациклических углеводородов (алканы, алкены, алкины)............................................................................................................ 71

3.2. ЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ..................................................................................... 74

3.2.1. Алициклические углеводороды (нафтены)..................................................................... 74

3.2.2. Ароматические углеводороды (арены)............................................................................ 77

3.2.3. Практикум........................................................................................................................... 82

Лабораторная работа № 5. Химические свойства аренов........................................................ 82

3.3. КИСЛОРОДСОДЕРЖАЩИЕ ОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ................................... 86

3.3.1. Спирты................................................................................................................................. 87

3.3.2. Фенолы................................................................................................................................ 91

3.3.3. Карбоновые кислоты.......................................................................................................... 93

3.3.4. Практикум........................................................................................................................... 96

Лабораторная работа № 6. Кислородсодержащие органические соединения....................... 96

3.4. СОЕДИНЕНИЯ АЗОТА И СЕРЫ......................................................................................... 100

3.4.1. Азотсодержащие соединения.......................................................................................... 100

3.4.2. Соединения, содержащие серу........................................................................................ 108

3.4.3. Практикум......................................................................................................................... 112

Лабораторная работа № 7. Химические свойства органических соединений азота и серы 112


ВВЕДЕНИЕ

Под химией нефти и газа подразумевается область знаний, охватывающая изучение химического состава нефти и газов, ее отдельных фракций или индивидуальных веществ, выделенных из нефтяных и газовых фракций.

Задачей химии нефти и газа является не только перечисление свойств различных нефтей и газов, но главным образом раскрытие тех закономерностей, которые связывают отдельные свойства между собой. У нефти нет "случайных" свойств: все они тесно связаны между собой, так как нефть в природе постоянно изменяется как и всякие другие природные объекты, и каждый проведенный анализ нефти в действительности соответствует лишь какому-то определенному этапу превращения нефти.

Однако если нефть и газ рассматривать как важное промышленное сырье, неизбежно встают вопросы их переработки, часто очень глубокой. Поэтому при рассмотрении свойств нефти неизбежно привлечение как данных, касающихся переработки нефти, так и вопросов аналитической химии нефти. Многие аналитические методы опираются на реакции, ведущие к познанию нефти как сложной смеси, прежде всего углеводородов, характеризующих нефть в целом. Поэтому в данной работе рассматриваются как свойства нефтей и газов в целом, так и свойства отдельных их компонентов и веществ, образующихся в ходе нефтепереработки, и присутствие которых может обнаруживаться в нефтепродуктах.

1. ГАЗ, НЕФТЬ И НЕФТЕПРОДУКТЫ

Наиболее важными природными источниками углеводородов являются горючие газы (природные и попутные) и нефть. Главная составная часть природных газов – метан (до 98%). Попутные газы, кроме метана (до 70%), содержат этан, пропан, бутан и пары низкокипящих жидких углеводородов, при этом процентное содержание компонентов зависит от месторождения.

Нефтью называется природная смесь углеводородов различных классов с различными сернистыми, азотистыми и кислородными соединениями. По внешнему виду нефть представляет собой маслянистую жидкость, чаще всего бурого цвета, хотя встречаются нефти, имеющие более светлые оттенки коричневого цвета. Вязкость нефти различна и зависит от ее состава. Представляя собой смесь органических веществ, нефть способна гореть, выделяя при этом до 50 000 джоулей на килограмм. Нефть практически не содержит химически активных веществ типа кетонов, спиртов и подобных соединений, хотя в некоторых случаях имеет кислотный характер вследствие некоторого содержания кислот. Все химические свойства нефти показывают, что нефть никогда не подвергалась действию высоких температур и поэтому для нее нехарактерны обычные компоненты, свойственные различным продуктам перегонки углей, торфа и других естественных горючих материалов. Нефть часто сопровождается в природе различными окаменелостями, позволяющими определить геологический возраст нефти в ее современном залегании. Обыкновенно нефть сопровождается газом и водой, представляющей собой раствор галоидных и углекислых растворимых солей, иногда в воде содержатся сероводород и растворимые сульфиды.

Нефти представляют собой очень сложную смесь органических соединений. В связи с этим исследование природы нефти, ее свойств, состава и строения ее компонентов очень важно. Пополнение наших знаний по всем перечисленным вопросам дает возможность:

• выбрать наиболее рациональный путь использования нефти каждого отдельного месторождения;

• наметить наиболее экологически безвредные пути добычи, транспортировки и переработки нефти;

• рассчитать наиболее экономически выгодные способы переработки, транспортировки и добычи нефти;

• выбрать наиболее удобные и выгодные способы борьбы с негативными явлениями, возникающими при разработке нефтяных месторождений, при транспорте и переработке нефти.

Кроме того, высокий уровень знаний химического состава, строения и основных закономерностей распределения органических соединений в нефтях - это ключ к познанию вопросов образования нефтей в природе, что, в свою очередь, позволяет сознательно подходить к проблеме разведки нефтяных месторождений.

1.1. Основные физические свойства и характеристики нефтей и газов

Нефти – это маслянистые жидкости, чаще всего темные, практически не растворимые в воде. Нефть и нефтепродукты флуоресцируют на свету, плохо проводят электричество.

1.1.1. Плотность.

В практике нефтепереработки принято иметь дело с величинами относительной плотности. Это безразмерная величина, численно равная отношению массы нефтепродукта при температуре определения к массе чистой воды при 4°С, взятой в том же объеме. В отличие от плотности относительным удельным весом называется отношение веса нефтепродукта при температуре определения к весу чистой воды при 4°С в том же объеме. При одной и той же температуре плотность и удельный вес численно равны, так как вес вещества пропорционален его массе. В ряде стран, в том числе в России, принято определять плотность ρ и удельный вес d при 20°С. Так как зависимость плотности нефтепродуктов от температуры имеет линейный характер, то, зная плотность при температуре , можно найти по формуле

, (1)

где γ температурная поправка к плотности на 1 град находится по таблицам или может быть рассчитана по формуле

γ = (18,310 - 13,233) ´10-4. (2)

Плотность большинства нефтей в среднем колеблется от 0,80 до 0,90. Высоковязкие смолистые нефти имеют плотность, близкую к единице. На величину плотности нефти оказывает существенное влияние наличие растворенных газов, фракционный состав нефти и количество смолистых веществ в ней. В большинстве случаев чем больше геологический возраст и соответственно больше глубина залегания пласта, тем меньшую плотность имеет нефть. Плотности последовательных фракций нефти плавно увеличиваются. Плотность узких фракций нефти зависит также от химического состава. Для углеводородов средних фракций нефти с одинаковым числом углеродных атомов плотность возрастает для представителей разных классов в следующем порядке:

нормальные алканы < нормальные алкены < изоалканы < изоалкены < алкилциклопентаны < алкилциклогексаны < алкилбензолы < алкилнафталины

Для бензиновых фракций плотность заметно увеличивается с увеличением количества бензола и его гомологов. Знание плотности нефти и нефтепродуктов необходимо для всевозможных расчетов, связанных с выражением их количества в весовых единицах. Для некоторых нефтепродуктов плотность является нормируемым показателем качества.

Относительный удельный вес нефтяных и природных газов определяется как отношение веса газа к весу такого же объема воздуха при одинаковых условиях.

.

Если считать газ идеальным, то при 273 К, давлении 101,3 кПа и объёме 22,4 л масса mг газа равна его молекулярной массе М. В таких же условиях масса 22,4 л воздуха составляет 28,9 г, поэтому относительная плотность газа относительно воздуха равна

(г/л). (3)

Если давление и температура отличаются от нормальных, то плотность газа можно рассчитать по формуле[1]

(4а) или (4б).

Плотность смеси нефтепродуктов можно рассчитать по выражениям (5-7), если известны массовая доля (уравнение (5)), объёмная доля (уравнение (6)) или масса компонентов (уравнение (7)).

(5); (6); (7).

 

Контрольные вопросы

1. Что такое относительная плотность? В каких единицах она измеряется?

2. Как связаны плотность и удельный вес?

3. Как меняется плотность нефтей в зависимости от: а) возраста нефти; б) количества растворённых в ней газов; в) фракционного состава?

4. Как плотность зависит от: а) температуры; б) от присутствия углеводородов разветвлённого строения; в) от присутствия ароматических углеводородов?

5. Можно ли для расчета плотности смеси воспользоваться правилом аддитивности?

Пример решения задачи

1. Рассчитать плотность газа, имеющего среднюю молекулярную массу 64, при 60ºС и давлении 3 атм.

Решение.

Дано: М = 64 Т = 60 + 273 = 333 К Р =3´1,013´105 = 3,039´105 Па   Ход решения. Относительную плотность газа находим по уравнению (4б) с учетом примечания: кг/м3

Задачи

1. Определите относительную плотность нефтепродукта , если у него

.

2. Относительная плотность бензиновой фракции =0,7560. Какова относительная плотность этой фракции при 50°С?

3. Определить относительную плотность смеси, состоящей из 250 кг бензина плотностью =0,756 и 375 кг керосина плотностью =0,826.

4. Определить относительную плотность смеси следующего состава (объёмн.%); 25 бензина (=0,756); 15 лигроина (=0,785); и 60 керосина (=0,837).

5. Смесь состоит из трёх компонентов, масса которых 459, 711 и 234 кг, а относительная плотность () равна 0,765; 0,790 и 0,780 г/мл, соответственно. Определите относительную плотность этой смеси .

1.1.2. Молекулярная масса

Молекулярная масса нефтей и нефтепродуктов - это усредненная величина, поскольку нефти - сложные смеси органических соединений различного строения и молекулярной массы. Молекулярная масса изменяется в широких пределах, но для большинства нефтей она колеблется в пределах 220-300. Она возрастает, так же, как и плотность, для нефтяных фракций с повышением температуры кипения.

По мере увеличения пределов кипения нефтяных фракций молекулярный вес их (Mср) плавно увеличивается от 90 (для фракций 50—100°С) до 480 (для фракции 550—600°С). Для упрощенных расчетов можно пользоваться формулой Войнова

Мср = 60 +0,3´tср + 0,001´tср2, (8)

где tср средняя температура кипения, определяемая по данным стандартной разгонки.

Молекулярные веса отдельных нефтяных фракций обладают свойством аддитивности. Поэтому для смесей нефтепродуктов можно рассчитать средний молекулярный вес, зная молекулярный вес отдельных компонентов и их содержание в смеси.

Молекулярный вес важен при изучении состава отдельных, лучше всего достаточно узких фракций, например, отобранных через 50°. Величина молекулярного веса лежит в основе современных методов группового анализа нефтяных фракций. Кроме того, молекулярный вес имеет значение при переходе от йодных или бромных чисел к реальному содержанию ненасыщенных соединений в нефтепродуктах. Для этого бывает достаточно располагать приближенным молекулярным весом.

Для одноименных по температуре кипения фракций различных нефтей, обычно содержащих углеводороды всех классов, молекулярные веса различаются мало, зато прочие свойства могут изменяться очень сильно. Масляные фракции нефти отбираются не по температуре кипения, а по удельному весу или вязкости, и одинаковые в этом отношении фракции могут сильно различаться по молекулярному весу.

Контрольные вопросы

1. Почему молекулярная масса нефти или нефтепродуктов – усреднённая величина?

2. Как меняется молекулярная масса нефтяных фракций при повышении температуры кипения?

3. Для какой фракции молекулярная масса выше: а) бензиновой или керосиновой; б) керосиновой или лигроиновой; в) керосиновой или газойлевой?

4. Обладает ли молекулярная масса фракции свойством аддитивности?

5. Для каких технологических процессов необходимо знать значение средней молекулярной массы?

Пример решения задач

1. Рассчитать среднюю молекулярную массу фракции со средней температурой кипения 118ºС.

Решение

Используем формулу Б.М.Войнова (8):

Мср = 60 +0,3´tср + 0,001´tср2 = 60 + 0,3´118 + 0,001´1182 = 109,3.

Задачи

6. Смешали 500 кг нефтяной фракции с температурой кипения 85ºC и 700 кг фракции с температурой кипения 115ºC. Определите средний молекулярный вес смеси и её температуру кипения.

7. Смесь состоит из 60 кг н-пентана, 40 кг н-гексана и 20 кг н-гептана. Определите среднюю молекулярную массу смеси.

8. Определите среднюю молекулярную массу широкой фракции, состоящей из 20% бензина с М = 110, 40% лигроина с М = 150, 20% керосина с М = 20 и 20% газойля с М = 250.

9. Смесь приготовили из 50 кг н-октана, 10 кг н-декана и 45 кг нефтепродукта с плотностью = 0,896. Определите среднюю молекулярную массу смеси.

1.1.3. Вязкость

Вязкость является важнейшей характеристикой нефтей, которая используется при подсчете запасов нефти, проектировании и разработке нефтяных месторождений, выборе способа транспорта и схемы переработки нефти.

На вязкость нефти и нефтепродуктов существенное влияние оказывает температура. С ее понижением вязкость увеличивается. Вязкостно-температурные свойства нефтепродуктов зависят от их фракционного и углеводородного состава. Наименьшей вязкостью и наиболее пологой вязкостно-температурной кривой обладают алифатические углеводороды, а наибольшей - ароматические углеводороды (особенно ди- и полициклические).

Многие нефти, а также некоторые масла при охлаждении до определенной температуры образуют коллоидные системы в результате кристаллизации или коагуляции части входящих в них компонентов. В этом случае течение жидкости перестает быть пропорциональным приложенной нагрузке (не подчиняется закону Ньютона) из-за появившихся внутри жидкости структурных образований. Чаще всего это асфальтены, парафины, церезины и некоторые другие. Вязкость таких систем носит название структурной. Для разрушения возникших структур требуется определенное усилие, которое называется пределом упругости. После разрушения структур жидкость приобретает свойства ньютоновских жидкостей.

Вязкость нефтепродуктов имеет большое практическое значение. От вязкости масла зависит ряд эксплуатационных свойств: износ трущихся деталей, отвод тепла от них и расход масла. С повышением температуры вязкость уменьшается и сильно возрастает при ее понижении. Эти изменения численно характеризуются индексом вязкости, представляющим собой температурный коэффициент вязкости. По индексу вязкости оценивают пригодность масел для данных условий работы механизмов. Для определения индекса вязкости сопоставляют вязкость масла при различных температурах, обычно при 50 и 100°С. Чем меньше вязкость зависит от температуры, тем выше индекс. Различают три вида вязкости: динамическую, кинематическую и относительную.

Динамическую, или абсолютную, вязкость определяют как силу в динах, которая необходима для взаимного перемещения со скоростью 1 см/с двух слоев жидкости с поверхностью 1 см2, находящихся на расстоянии 1 см друг от друга. Единица динамической вязкости в системе СГС называется пуазом (Пз). Размерность пуаза — г/см´с; 0,01 Пз называется сантипуазом. В Международной системе (СИ) единица динамической вязкости — ньютон-секунда на квадратный метр — равна динамической вязкости такой жидкости, в которой при изменении скорости движения жидкости 1 м/с на расстоянии 1 м касательное напряжение равно силе в 1 ньютон на квадратный метр н-с/м2. Эта единица в 10 раз больше пуаза. Динамическую вязкость определяют при помощи вискозиметра Уббелоде-Голде или по времени истечения жидкости через капиллярные трубки и рассчитывают по формуле

, (9)

где η — динамическая вязкость; Р — давление, при котором происходило истечение жидкости; τ — время истечения жидкостей в объеме v; L — длина капилляра; r — радиус капилляра.

Величина, обратная динамической вязкости, называется текучестью.

Кинематической вязкостью νt называют отношение динамической вязкости ηt при данной температуре к плотности ρt при той же температуре:

. (10)

Единицу кинематической вязкости называют стоксом (Cm), 1 = 100 cСт (сантистокс). Размерность кинематической вязкости выражается в см2/с. Практической единицей измерения кинематической вязкости является сантистокс. Единица кинематической вязкости в СИ имеет размерность м2/сек. Она равна кинематической вязкости такой жидкости, динамическая вязкость которой составляет 1 н´с/м2, а плотность 1 кг/м3. Эта единица в 104 раз больше стокса.

Относительная (условная) вязкость μ не представляет собой физической характеристики нефтепродукта, так как она зависит от способа определения, конструкции прибора и других условий, но удобна как сравнительная величина. В расчетах, в технических нормах, при арбитражных и контрольных испытаниях используют только абсолютную (кинематическую и динамическую) вязкость. В нефтяной практике относительной вязкостью называют отношение вязкости данного нефтепродукта к вязкости воды при 0°С:

, (11)

где 1,789 — вязкость воды при 0°C.

Условная вязкость представляет собой отношение времени истечения определенного объема исследуемого продукта ко времени истечения такого же объема стандартной жидкости при определенно установленной температуре. В качестве стандартной жидкости используют дистиллированную воду при температуре + 20°C. Условную вязкость выражают условными единицами, градусами или секундами. В различных странах, в зависимости от выбора стандартной аппаратуры для определения условной вязкости, приняты различные единицы условной вязкости. Чаще всего условная вязкость выражается градусами Энглера. Числом градусов Энглера называют отношение времени истечения из вискозиметра Энглера 200 мл испытуемого продукта при данной температуре ко времени истечения 200 мл дистиллированной воды при 20°С. Ее обозначают знаком ВУ или Е. Для пересчета кинематической вязкости в условную и обратно используют специальные таблицы или эмпирические формулы, например:

, (12)

а для высоких значений вязкости (сСт) и .

Определение условной вязкости также основано на истечении жидкости (через трубку с диаметром отверстия 5 мм) под влиянием силы тяжести. Условную вязкость определяют для нефтяных топлив (мазутов).

Контрольные вопросы

1. Как и почему меняется вязкость при повышении температуры?

2. Что такое структурная вязкость? Каковы основные причины её появления?

3. Какие жидкости называются ньютоновскими?

4. Что такое "динамическая вязкость"? "Кинетическая вязкость"?

5. Перечислите единицы измерения динамической и кинетической вязкости.

6. Что такое "условная вязкость"?

Пример решения задач

1.Кинематическая вязкость при 50ºС нефтепродукта с плотностью = 0,689 кг/дм3 равна 6,2 мм2/с. Рассчитайте условную и динамическую вязкость при этой температуре.

Решение

Кинематическая и динамическая вязкости связаны уравнением (10); подставив в него значения ν50и ρ50, получим

Па´с = 42,72 Ст.

Для расчета условной вязкости используем формулу (12):

откуда .

Задачи

10. Рассчитайте динамическую вязкость н-декана при 40ºC, если его кинематическая вязкость при этой температуре составляет 7,3 мм2/с.

11. Динамическая вязкость толуола при 20ºC составляет 0,584´10-3 Па´с. Рассчитайте его кинематическую вязкость при 0ºC и 20ºC.

12. Масляная фракция имеет при 60ºC условную вязкость 3,81º. Определите кинематическую и динамическую вязкость фракции при этой температуре.

13. Условная вязкость сураханской нефти при 50ºC равна 1,63º. Определить кинематическую и динамическую вязкость нефти при той же температуре, если плотность её ρ = 879 кг/м3.

14. Кинематическая вязкость калинской нефти при 20 и 50ºC соответственно равна 65 и 16. Найти условную вязкость нефти при тех же температурах.

1.1.4. Температуры вспышки и застывания

Температура вспышки – это минимальная температура, при которой пары нефтепродукта (или нефти) образуют с воздухом смесь, способную к кратковременному образованию пламени при внесении в нее внешнего источника воспламенения (пламени, искры). Для большинства нефтей температура вспышки ниже 0°С. Она зависит от фракционного состава нефти или нефтепродукта.

Температура застывания - это температура, при которой нефть или нефтепродукт в стандартных условиях теряют подвижность. Температура застывания нефти и нефтепродуктов зависит от их химического состава. Она изменяется от –62º до +35°С. Малопарафиновые нефти имеют низкие температуры застывания, а высокопарафиновые - высокие температуры застывания.

Кристаллизация парафина сопровождается помутнением нефти или нефтепродукта. Появление мелких кристаллов в массе нефтепродукта считается моментом помутнения. Температура, зафиксированная при этом, называется температурой помутнения. Ее определяют визуально, сравнивая охлаждаемый нефтепродукт с эталоном.

Контрольные вопросы

1. Что такое температура вспышки?

2. Объясните, почему в местах нефтедобычи и нефтепереработки запрещается курение?

3. От чего главным образом зависит температура вспышки?

4. Что такое температура застывания? От чего она главным образом зависит?

5. Почему в топливах, используемых при низких температурах, недопустимо заметное присутствие парафинов?

1.1.5. Элементный состав нефтей.

Его знание важно для правильного выбора метода переработки нефти, для составления материальных балансов некоторых процессов. Так, наличие в нефти сернистых и кослородсодержащих соединений требует сооружения специальных установок для очистки от этих соединений.

Основными элементами в составе нефтей являются углерод (83-87%) и водород (12-14%). Соотношением углерода и водорода определяются физические свойства нефтей. Горючие ископаемые - газ, нефть и уголь – отличаются друг от друга соотношением углерода и водорода. Уголь наиболее обеднен водородом, этим объясняется его твердое состояние. Кроме того, в нефтях найдены и другие элементы, такие как сера, кислород, азот. Содержание серы колеблется от сотых долей до 8%, может быть и больше. Количество азота изменяется в пределах от тысячных долей процента до 1,5%, а кислорода – от десятых долей до 3,6%. В нефтях обнаружены в незначительных количествах многие элементы, такие как Fe, Са, К, Mg, Ni, Mn, V, Ti и др.

1.1.6. Фракционный состав нефтей

Определяют путем перегонки, т.е. разделением на фракции по температурам кипения. При исследовании новых нефтей фракционный состав определяют перегонкой нефти в специальных аппаратах. От начала кипения до 300°С отбирают десятиградусные фракции, а затем пятидесятиградусные фракции до фракций с окончанием кипения 475-550°С. Или же отмечают температуру начала кипения, температуры, при которых отгоняется 10, 50, 95 и 97,5 объемн. %, а также остаток и потери.

В условиях промышленной перегонки нефти отбирают фракции со следующими пределами выкипания:

Бензин н.к. -180-200°С

Лигроин 160-200°С

Керосин 200-300°С

Газойль 270-350°С

Мазут > 350°С

Мазут перегоняют под вакуумом, при этом отбирают масляные фракции. Остаток после разгонки мазута (выше 500°С) называется гудрон или полугудрон. Нефти различных месторождений значительно отличаются друг от друга по фракционному составу, и, следовательно, по потенциальному содержанию бензиновых, керосиновых, газойлевых и масляных фракций. Большинство перерабатываемых в промышленности нефтей содержит от 30 до 50% светлых нефтепродуктов, т.е. фракций, перегоняющихся до 300-350°С. Легкие нефти, не содержащие тяжелых фракций, встречаются достаточно редко, в основном это газоконденсаты. Найдены также и тяжелые нефти, не содержащие светлых фракций и богатые смолистыми веществами.

Контрольные вопросы

1. Как определяют фракционный состав нефтей?

2. Перечислите основные фракции нефти.

3. Чем определяется фракционный состав нефтей?

4. Что такое мазут, гудрон, полугудрон?

1.1.7. Химический состав нефтей.

Поскольку главные элементы в составе нефтей углерод и водород, можно сделать вывод, что основными компонентами в нефтях являются углеводороды. Их содержание в различных нефтях составляет в среднем от 30 до 70%, а в газоконденсатах может быть до 100%.

В нефтях, в основном, содержатся компоненты трех рядов углеводородов: алканов, циклоалканов (нафтенов) и аренов. Недавно в некоторых нефтях Восточной Сибири и Татарии были найдены непредельные углеводороды. В состав нефти входят также гетероатомные органические соединения: кислород-, серу- и азотсодержащие соединения, а также смолисто-асфальтеновые вещества.

Алканы содержатся в различных нефтях в количестве от 20 до 70% и представлены структурами нормального и разветвленного строения:

СН3-СН2-СН2-СН2-СН2-СН2-СН2-СН3

н-октан 2,5-диметилгексан

Для большинства нефтей характерно преобладание алканов нормального строения.

В бензиновые фракции попадают алканы, имеющие в молекуле от 5 до 10 атомов углерода (C5-C10). Во фракциях нефти, выкипающих выше 300°С, в значительных количествах могут содержаться твердые алканы (парафины) (С17 и выше).

Циклоалканы (нафтеновые углеводороды, нафтены) в различных нефтях содержатся в количестве от 40 до 70%. Эти углеводороды в основном представлены циклопентановыми и циклогексановыми структурами:

В бензиновые фракции попадают циклоалканы, имеющие в молекуле от 5 до 10 атомов углерода (С5 – С10), т.е. циклопентан, циклогексан и их гомологи, например:

Во фракциях 200-350°С (керосино-газойлевых) значительную долю со-ставляют бициклические и трициклические углеводороды:

В более высококипящих фракциях могут содержаться углеводороды, имеющие в молекуле 4 и 5 колец.

Ароматические углеводороды (арены) содержатся в различных нефтях в количестве от 5 до 35%.

В бензиновую фракцию попадают ароматические углеводороды, имеющие от 6 до 9 углеродных атомов в молекуле (бензол и его гомологи). Например:

В керосино-газойлевых фракциях значительную долю составляют би- и трициклические структуры:

Во фракциях, выкипающих выше 350°С, значительную долю составляют углеводороды смешанного строения. Это полициклические углеводороды, молекулы которых содержат ароматические кольца, нафтеновые кольца и парафиновые цепи, например:

Химический состав нефтепродуктов в значительной степени оказывает влияние на их свойства. Например, одним из основных показателей качества бензинов, применяемых как топлива для двигателей внутреннего сгорания, является их антидетонационная стойкость (способность сгорать в камере двигателя без детонации). Детонационная стойкость топлива оценивается в октановых числах. Значения октановых чисел бензинов зависят от того, какие углеводороды преобладают в этих бензинах.

Октановым числом называется условная единица измерения детонационной стойкости, численно равная процентному (по объему) содержанию изооктана (2,2,4-триметилпентана) в его смеси с нормальным гептаном, эквивалентной по детонационной стойкости испытуемому топливу при стандартных условиях испытания.

Парафиновые углеводороды нормального строения (неразветвленные) имеют низкие октановые числа (О.Ч.), т.е. низкую устойчивость против детонации (например, О.Ч. н-гептана равно 0). Разветвленные парафиновые углеводороды имеют более высокие октановые числа, причем с увеличением степени разветвления октановые числа парафиновых углеводородов повышаются, например:

 

Следовательно, разветвленные алканы желательны для бензинов. Нафтеновые углеводороды имеют октановые числа выше, чем соответствующие алканы, например:

Они также являются желательными компонентами для бензинов.

Ароматические углеводороды имеют высокие октановые числа; так, октановое число бензола - 108, толуола - 104, изопропилбензола - 99,3. Однако на их содержание в автомобильных бензинах накладываются ограничения, поскольку они гигроскопичны (поглощают влагу из воздуха), увеличивают нагарообразование двигателя и повышают температуру сгорания топлива в двигателе, что приводит к росту теплонапряженности двигателя.

Керосино-газойлевые фракции используются в качестве дизельных топлив, для которых основным показателем качества является температура самовоспламенения. Способность к самовоспламенению дизельных топлив оценивается в цетановых числах. По аналогии с октановым цетановым числом называется процентное содержание (по объему) цетана (гексадекана) в смеси с a-метилнафталином, эквивалентной по самовоспламеняемости испытуемому топливу при сравнении топлив в стандартных условиях испытания.

Наиболее высокие цетановые числа имеют нормальные алканы с длинной цепочкой, например, нормальный цетан С16Н34 имеет цетановое число 100. С другой стороны, у a-метилнафталина цетановое число равно 0.

Следовательно, чем больше содержание нормальных алканов в дизельном топливе, тем выше цетановое число данного топлива. Однако в дизельное топливо попадают алканы с числом атомов углерода С1120. Такие нормальные алканы имеют высокие температуры застывания. Например:

-9,6°С (н-С12Н26); -5,4°С (н-С13Н28); +18,2°С (н-С16Н34); +36,8°С (н-С20Н42). Поэтому дизельное топливо с высоким содержанием нормальных алканов не сможет работать в зимних условиях. Для дизельных топлив наиболее желательны монометилразветвленные алканы. Например:

Он имеет Тпл = + 18,3°С. Его температура застывания в два раза ниже, чем у н-С20Н42.

Слаборазветвленные алканы имеют более низкие температуры застывания по сравнению нормальными алканами с тем же числом углеродных атомов, в то время как их цетановые числа близки к цетановым числам н-алканов.

Нафтеновые углеводороды имеют значительно более низкие цетановые числа, чем нормальные алканы. Из нафтеновых углеводородов для дизельных топлив лучше нафтеновые углеводороды с одним кольцом в молекуле и длинной неразветвленной боковой цепочкой:

Наиболее низкие цетановые числа имеют ароматические углеводороды.

Одним из требований к нефтяным маслам является их способность иметь определенный минимум вязкости при высоких температурах и достаточную подвижность при температурах запуска двигателя. Это свойство масла определяется его вязкостными характеристиками. Полнее всего вязкостные свойства масла характеризуются кривой зависимости вязкости от температуры. Для масел наиболее желательны нафтеновые и ароматические структуры с наименьшим количеством колец и длинными боковыми цепями. Такие структуры улучшают вязкостно-температурные характеристики масел и повышают их стабильность к окислению. Полициклические ароматические углеводороды и углеводороды смешанного строения с короткими боковыми цепями ухудшают вязкостные свойства масел и понижают стабильность их к окислению. Твердые алканы также нежелательны в маслах, т.к. они кристаллизуются из масла, снижая его подвижность при низких температурах.

Гетероатомные соединения. Помимо углеводородов, в нефтях содержатся также органические соединения, в молекулах которых, кроме углерода и водорода, могут содержаться сера, кислород или азот.

Кислородсодержащие соединения в нефтях представлены, в основном, фенолами и кислотами. Содержание кислот в различных нефтях колеблется от десятых долей до 3%. Кислоты в нефтях могут быть алифатические, нафтеновые и ароматические:

Наибольшая доля в составе кислот приходится на нафтеновые кислоты.

Более 60% добываемых в настоящее время нефтей - это сернистые и высокосернистые нефти, т.е. с содержанием общей серы более 1%. Сернистые соединения в нефтях - это меркаптаны (RSH), сульфиды (R-S-R), дисульфиды (R-S-S-R), циклические сернистые соединения (тиофаны и тиофены). Кроме того, в нефтях содержатся и неорганические сернистые соединения (элементная сера S и сероводород Н2S).

Азотистые соединения нефти - это пиридин, хинолин, составляющие группу азотистых оснований, а также пиррол, индол, которые условно относят к нейтральным азотистым соединениям:

Смолисто-асфальтеновые вещества. Содержание их в нефтях колеблется от нескольких процентов до 10-20% и выше (в случае смолистых нефтей). Смолисто-асфальтеновые вещества представляют собой полициклические системы с числом колец в молекуле 4-6 и более. В составе этой полициклической системы содержатся нафтеновые и ароматические кольца, а также гетероциклические системы с атомами О, S и N в кольцах, структуры типа представленных ниже и более конденсированные системы:

Контрольные вопросы

1. Перечислите основные классы органических соединений, встречающихся в нефтях.

2. Алканы какого строения присутствуют в основном в нефтях?

3. Какие по строению нафтены встречаются в нефтях?

4. Какие арены можно обнаружить в различных фракциях нефти?

5. Что такое октановое число? Как оно связано со структурой углеводородов?

6. Что характеризует цетановое число? Для каких соединений оно максимально?

7. Какие азотсодержащие соединения встречаются в нефтях? Какие химические свойства для них характерны?

8. Перечислите основные классы кислородсодержащих соединений, присутствующих в нефтях.

9. В виде соединений каких классов встречаются серосодержащие соединения в нефтях?

10. Какие соединения обуславливают тёмно-коричневый (чёрный) цвет нефти?

1.2. Классификация нефтей

В настоящее время в мире разрабатывается большое число нефтяных месторождений. Нефти, получаемые с этих месторождений, различаются по химическому составу, свойствам, потенциальным возможностям получения из них нефтепродуктов.

В связи с этим важное значение имеет классификация нефтей. Правильная классификация может оказать помощь в решении вопросов генезиса нефтей, поиске и разведке нефтяных месторождений, а также в выборе путей переработки нефтей. Основными видами классификации нефтей являются химическая и технологическая.

В основу химической классификации положен химический состав нефтей, т.е. преимущественное содержание в нефти какого-либо одного или нескольких классов углеводородов. Согласно этой классификации различают нефти: парафиновые, нафтеновые, ароматические. При отнесении нефти к одному из этих типов исходят из того, что представители данного класса углеводородов содержатся в данной нефти в количестве более 50%. Например, нефти полуострова Мангышлак – парафиновые; бакинские нефти - нафтеновые. Большинство перерабатываемых в промышленности нефтей относятся к нефтям смешанного типа, т.е. когда представители другого класса углеводородов содержатся в нефти в количестве не менее 25% (парафино-нафтеновые, нафтено-ароматические). Например, многие Волго-Уральские нефти парафино-нафтеновые.

Редко встречаются нефти, в которых представители всех трех классов углеводородов содержатся примерно в одинаковых количествах: парафино-нафтено-ароматические (Майкопская нефть).

Однако эта классификация нефтей довольно условна, поскольку углеводородный состав даже нефти одного месторождения меняется при переходе от одного горизонта залегания к другому.

В технологической классификации нефтей учитывают такие показатели, как плотность нефтей, массовое содержание светлых фракций, массовое содержание серы, смолисто-асфальтеновых соединений, твердых парафинов.

По плотности различают нефти: легкие с плотностью до 0,84 г/см3, средние - 0,84-0,88 г/см3 и тяжелые - 0,88-0,92 г/см3 и выше.

По содержанию серы подразделяют нефти на малосернистые (до 1% серы), сернистые (от 1 до 3%) и высокосернистые (до 13-14% серы).

По содержанию смолисто-асфальтеновых веществ: малосмолистые нефти - до 10%, смолистые - от 10 до 20%, высокосмолистые - от 20 до 35% асфальтено-смолистых веществ.

По содержанию твердых парафинов: малопарафинистые нефти - до 5% парафина, парафинистые - от 5 до 10%, высокопарафинистые - более 10% парафина.

Большое значение для определения возможности дальнейшего использования нефти имеет содержание в нефтях светлых фракций (фракций, выкипающих до 300°С). Низким считается содержание светлых фракций до 25%, средним - от 25 до 50%, высоким - от 50 до 100%.

Рациональная переработка нефти и нефтепродуктов играет важную роль в современной экономике.

 

1.3. Практикум

Лабораторная работа № 1




Поделиться с друзьями:


Дата добавления: 2014-10-17; Просмотров: 1547; Нарушение авторских прав?; Мы поможем в написании вашей работы!


Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет



studopedia.su - Студопедия (2013 - 2024) год. Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав! Последнее добавление




Генерация страницы за: 0.177 сек.